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1. TECHNICAL ANNEX A: METHODOLOGY IDENTIFICATION AND 
UNDERSTANDING CO-EXPOSURE AND MIXTURE RISK IN THE ENVIRONMENT 

This section outlines the methodology used for identification and understanding co-exposure 
and mixture risk in the environment. It includes a description of which databases have been 
considered, how the data have been processed and analysed. 
 
1.1. DATABASES  

1.1.1. OVERVIEW DATABASES 

To collect environmental monitoring data, online databases were screened. The focus is on 
aquatic, dissolved exposure, though data for sediment and soil were also considered. Especially 
sediment data are relevant because sediment are sinks for many chemicals entering the aquatic 
environment and could therefore be more reflective of long-term averaged co-exposure. Also, 
several biodiversity indices are based on macro-invertebrates in/on the sediment. However, this 
compartment is harder to monitor and thus extensive monitoring databases were not found.  
 
Following criteria were used to select suitable databases: (1) a wide range of chemicals were 
monitored, covering as many chemical groups (e.g. agrochemicals, industry chemicals, metals, 
pharmaceuticals) as possible; (2) samples are linked to a location and time (3) ideally, the 
biological status of the waters is also monitored. 
 
In the project, three types of monitoring databases were considered: European-wide databases, 
river basin databases and national or regional databases. An overview of the databases 
considered in the project can be found in Table 1. Based on the final size of the datasets (see 
Section 1.2), data availability and homogenity and the spatiotemporal coverage, the following 
databases were chosen for further analysis: EEA Waterbase (referred to as “Waterbase”), 
Danube River Basin Water Quality Database (“Danube”), ICPR – Rhine water quality 
(“Rhine”), eauFrance, Flemish environmental agency (VMM) environmental quality database 
(“Flanders”) and Waterkwaliteitsportaal (“Netherlands”).  
A critical note has to be made with regard to the use of classical regulatory monitoring 
campaigns (such as under the Water Framework Directive WFD). These, typically focus on a 
limited, predefined set of priority substances. E.g. the Flemish Environment Agency reported 
concentrations for 34 different organic substances ‘only’ with special focus on pesticides and 
PAHs, in addition to 22 metals. However, many of the inland waterways in Europe are also 
impacted by the presence of the new “Watch List” chemicals, emerging drugs and nutrients that 
are not currently regulated under the WFD. Water regulators and authorities do not always know 
the levels, locations or impacts of these pollutants. Indeed, scientific monitoring approaches 
highlighted the co-occurrence of hundreds of chemicals in different freshwater bodies (e.g. 
Loos et al., 2009, 2013; Moschet et al., 2014; Munz et al., 2017). Busch et al. (2016) described 
the diversity of potential molecular targets for contaminant-biosystem interactions: 426 organic 
chemicals were detected in three EU rivers, including 173 pesticides, 128 pharmaceuticals, 69 
industrial chemicals and 56 other compounds. 
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Table 1: Databases considered in this project. 

Type Database Description 
European EEA Waterbase Status and quality of Europe's rivers, lakes, groundwater 

bodies and transitional, coastal and marine waters, on 
the quantity of Europe's water resources, and on the 
emissions to surface waters from point and diffuse 
sources of pollution. 
Link: https://www.eea.europa.eu/data-and-
maps/data/waterbase-water-quality-icm-1  

IPChem European Commission’s reference access point for 
chemical occurrence data in Europe.  
Link: 
https://ipchem.jrc.ec.europa.eu/index.html#discovery 

NORMAN 
network 

This EU network of laboratories and research centers in 
the field of monitoring emerging environmental 
substances curates a database that includes exposure, 
ecotoxicological and bioassay monitoring data. 
Link: https://www.norman-network.com/nds/  

River 
basin 

Danube River 
Basin Water 
Quality 
Database 

Comparable and reliable information on water quality 
(chemical, biological and effect monitoring) for the 
whole length of the Danube River including the major 
tributaries. 
Link: https://www.icpdr.org/wq-db/  

ICPR – Rhine 
water quality 

Good database with several sites across countries 
monitored over many years along the Rhine. 
Link: https://www.iksr.org/en/topics/water-
quality/water-quality-data  

National / 
Regional 

eauFrance Data of surface water in France 
https://geo.data.gouv.fr/fr/datasets/5a3bfb08ce37de663133c8c
19034231b4fc6d76c 

http://www.naiades.eaufrance.fr/france-entiere#/ 

Flemish 
environmental 
agency (VMM) 
environmental 
quality database 

VMM has been monitoring water quality indices 
(chemical and biological status) in Flanders for decades, 
including species abundance and biodiversity indices1. 

http://geoloket.vmm.be/Geoviews/ 

HMS (UK) Historic UK Water Quality Sampling Harmonised 
Monitoring Scheme Summary Data 

https://data.gov.uk/dataset/bda4e065-41e5-4b78-b405-
41c1d3606225/historic-uk-water-quality-sampling-harmonised-
monitoring-scheme-summary-data 

Swedish 
University of 
Agricultural 
Science (SW) 

Swedish national data hosts for data collected from 
national and regional fresh water monitoring, as well as 
from recipient monitoring (chemical & biological 
monitoring in Sweden). 

http://www.slu.se/miljodata-MVM 

 
1 Viaene et al 2017. Multivariate analyse van VMM meetdata met behulp van ordinatietechnieken en drempel- 
waardeanalyse. Bestek nr. A 2017 S 0001 L. 
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https://www.slu.se/en/departments/aquatic-sciences-
assessment/  

Waterkwaliteitsp
ortaal (NL) 

Waterkwaliteitsportaal collects data for the WFD 
(surfacewater & groundwater) 

https://www.waterkwaliteitsportaal.nl/wkp.webapplication 

 

1.1.1.1. WATERBASE  

Waterbase is the generic name given to the EEA's databases (European Environment Agency) 
on the status and quality of Europe's rivers, lakes, groundwater bodies and transitional, coastal 
and marine waters, on the quantity of Europe's water resources, and on the emissions to surface 
waters from point and diffuse sources of pollution. The dataset contains time series of nutrients, 
organic matter, hazardous substances and other chemicals in rivers, lakes, groundwater, 
transitional, coastal and marine waters. The data has been compiled and processed by EEA.  
 
For this project, the database on chemical status and quality was used (Waterbase quality ICM). 
Specifically, we used the dataset T_WISE6_DisaggregatedData containing the disaggregated 
water quality data on the observed values (e.g. concentrations) of determinants in water, 
sediment and biota samples in inland, coastal and marine waters as reported by EEA Member 
Countries on an annual basis. 
 

 
Figure 1: Infogram on Waterbase data set (top left: number of samples per parameter, top right: 
number of sample per parameter group, bottom left: number of samples versus time, bottom 
centre: number of samples per country, bottom right: number of samples per type of water body 
(RW=river water; GW=ground water; LW=lacustrine water), central: number of samples detected 
(blank) and non-detected with the various LOQ. 

Additionally, data on the biological status of the waters (Waterbase - Biology) was also 
gathered. The dataset contains time series of data on biological quality elements (BQEs) such 
as phytobenthos and macroinvertebrates in rivers, lakes, transitional and coastal waters.  
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This is a very extensive European dataset, covering a wide range of chemicals (Figure 1). 
Member states report at least the priority pollutants. However, the complete range of chemicals 
in the dataset is much wider (449 different chemicals). For most samples, extensive information 
on the space and time of the sampling is available. The availability of biological monitoring 
data is an additional strength of this database. This database was considered useful for the aims 
of the current project.  

1.1.1.2. NORMAN  

The NORMAN network enhances the exchange of information on emerging environmental 
substances, and encourages the validation and harmonisation of common measurement methods 
and monitoring tools so that the requirements of risk assessors and risk managers can be better 
met. NORMAN organises the development and maintenance of various web-based databases 
for the collection & evaluation of data / information on emerging substances in the environment 
For the current project, the Substance database and the Chemical Occurrence database were 
most useful. The Substance database is a merged list of NORMAN substances, offering a 
central database with various substances for suspect screening and prioritization. The Chemical 
Occurrence Data is a database of geo-referenced monitoring data on emerging substances. The 
number of samples in the database are quite limited (<1000). Measurements from Phenanthrene 
in Slovakia and 2008 are dominating the databases (see Figure 2). Chemicals in the NORMAN 
database are typically measured individually and not as part of a mixture. Therefore, the dataset 
to analyse for mixture data is too limited to take into account for analyses.  
 

 
Figure 2: Infogram on NORMAN data set (top left: number of samples per parameter, bottom left: 
number of samples versus time, bottom centre: number of samples per country, bottom right: 
number of samples per river, central: number of samples detected (blank) and non-detected. 
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1.1.1.3. IPCHEM  

The Information Platform for Chemical Monitoring (IPCHEM) is the reference access point for 
discovering chemical monitoring data collections which are managed by and are available to 
European Commission bodies, Member States, international and national organisations and 
research communities. The Platform aims to support a more coordinated approach for 
collecting, storing, accessing and assessing data related to the occurrence of chemicals and 
chemical mixtures, in relation to humans and the environment. IPCHEM is designed and 
implemented as a de-centralised system, providing remote access to existing information 
systems and data providers.  
 
At the time of project initiation and data gathering, the IPCHEM database portal was being 
revised. Data selection was possible on individual chemicals or for all chemicals measured in a 
geographical area. The latter was still in beta and the number of samples accessible this way 
was limited. Additionally, the IPCHEM database is a collection of individual databases that not 
necessarily cover the same chemicals. Therefore, the choice was made to focus on other 
databases.  

1.1.1.4. DANUBE BASIN 

The International Commission for the Protection of the Danube River (ICPDR) works to ensure 
the sustainable and equitable use of waters in the Danube River Basin. The ICPDR addresses 
the entire Danube River basin, comprising 19 countries, making it the most international river 
basin in the world. Including more than 300 tributaries and connected groundwater resources 
too, this makes the ICPDR one of the largest and most active international river basin 
management commissions in the world. The river basin covers 817,000 square kilometers and 
83 million people live in its catchment area. The Danube passes through numerous large cities 
– including four national capitals, Vienna, Bratislava, Budapest and Belgrade. 
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Figure 3: Infogram on Danube data set (top left: number of samples per parameter, bottom left: 
number of samples versus time, bottom centre: number of samples per country, bottom right: 
number of samples per river, central: number of samples detected (blank) and non-detected. 

 
A Joint Danube Survey is carried out only once every six years – JDS1 was held in 2001 and 
JDS2 in 2007. JDS3 completed the sampling in 2013 to enter an extensive analysis stage and 
published the final reports in 2015. The Joint Danube Survey 3 (JDS3) was the world’s biggest 
river research expedition of its kind in 2013, the UN International Year of Water Cooperation. 
For six weeks between 13 August and 26 September 2013, the JDS3 ships travel 2,375 km 
downstream the Danube River, through 10 countries, to the Danube Delta.  
 
While the JDS3 campaign covered a large geographical area, the temporal dimension was 
limited. This resulted in a database with a limited number of locations/samples (40). The 
chemical monitoring for chemicals was very extensive, with 395 chemicals monitored in total. 
This included traditional substances (pesticides, priority pollutants) as well as emerging 
pollutants e.g. pharmaceuticals. This feature of the database hinders the planned statistical 
analyses (PCA) of the database. For the analyses in this project, the JDS3 database is thus not 
useful. 

1.1.1.5. RHINE BASIN 

The state of the Rhine is being monitored from Switzerland until the Netherlands by ICPR – 
International Commission for the Protection of the Rhine. The first monitoring was carried out 
as early as the 1950ies, so that, for certain substances in the Rhine, corresponding time series 
are available. Over time, more and more substances were included in monitoring activities, the 
measurement of suspended matter was expanded and the sampling frequency was increased. 
Monitoring results are supplemented every year, thus continuing time series (see Figure 4). The 
data can be downloaded at https://www.iksr.org/en/topics/water-quality/water-quality-data. 
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Figure 4: Infogram on Rhine data set (top left: number of samples per parameter, top right: 
number of sample per parameter group, bottom left: number of samples versus time, bottom 
centre: number of samples per monitoring location, bottom right: number of samples per river, 
central: number of samples detected (blank) and non-detected (“<”)). 

 
The monitored parameters include both organic micropollutants, inorganic compounds and 
general water quality parameters. The monitored chemicals are mainly priority substances 
under the EU Water Framework Directive. The sampling intensity has increased over time. The 
monitoring locations are mainly located at the river Rhine and some major tributaries. 
Therefore, this data set does not monitor and is not representative for the entire catchment. Also, 
the number of monitoring locations is rather small. Only about 6 monitoring locations have 
been intensively monitored. The database is nevertheless considered as a good database 
because it includes many samples in time (on the same location) allowing to assess temporal 
patterns in co-exposure. 

1.1.1.6. FRANCE (EAUFRANCE) 

In France, there are 6 water agencies established since 1964 consisting of 6 big water basins 
Adour-Garonne, Loire-Bretagne, Seine-Normandie, Artois-Picardie, Rhin-Meuse and Rhône-
Méditerranée. These water agencies carry out a mission for general interest, including 
managing, preserving water sources and aquatic environment. The analysis on water quality has 
been started by these agencies ever since. The data is annually updated in the database of 
eauFrance and can be downloaded at http://www.naiades.eaufrance.fr/. 
 
In scope of this study, two datasets of EauFrance were selected: a local dataset of Adour-
Garonne of period 2015-2019 and a dataset of entire France of period 2014-2019. 
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Adour-Garonne dataset: 
This dataset can be downloaded separately at this link. The measurement was started in 1971 
and has been regularly updated. For the current study, period 2015-2019 was selected. The data 
package includes physchem, phytosanitary and hydrobiology data (see Figure 5).  
 

 
Figure 5: Infogram on Adour-Garonne data set (top left: number of samples per parameter, top 
center: number of sample per compartment, top right: number of samples detected (“1”) and 
non-detected (“<LOQ”), bottom left: number of samples versus time, bottom right: number of 
samples per monitoring location.  

 
The physchem data includes more than 2000 sampling sites covering 7 sub basins in the region, 
with more than 409 variables. The data consist of 38.9% of water quality parameters (eg: pH, 
temperature, dissolved oxygen, etc.) and the rest is chemical substance measurement. Since 
water quality parameters are not relevant for this study, the focus is set on chemical substances 
which are consisting of 47% industrial substances, 12% agrochemical substances, 21% 
pharmaceutical substance, 5% PAHs and 15% of mixed-use substance. With the diversity of 
measured chemicals, large number of sampling sites and broad period of time, this dataset is 
considered as a good database to further investigate in this project. 
 
Entire France dataset: 
For the current study, the period 2014-2019 was selected. The data package includes physchem, 
phytosanitary and hydrobiology data. A total of 1880 chemicals were reported in the dataset 
over 12235 sites. This means that this database was used as a good database in the current 
study.   

1.1.1.7. FLANDERS (VMM) 

Flanders Environment Agency (abbreviated VMM – Vlaamse Milieu Maatschappij) is an 
agency of the Flemish government working towards a better environment in Flanders. In 
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addition to its other tasks, VMM measures and controls the quantity and the quality of surface 
water, groundwater and sediments and reports about the results. This covers all main rivers in 
Flanders (Maas, Scheldt, Yser) and its tributaries. VMM monitors both chemical and biological 
water quality.  
 
The data from 2007-2015 were available for use in this project. Both inorganics (metals) and 
organic pollution (12 PAHs and 22 pesticides) were monitored. There is a good spatial and 
temporal coverage of the database, and a good mix of organic and inorganic pollution. 
Additionally, the biological status linked with the chemical status enables an impact analysis of 
the mixture exposure. Therefore, this was considered a useful database for this analysis.  

1.1.1.8. THE NETHERLANDS 

“Het Waterkwaliteitsportaal” (WKP) collects and curates the for the Water Framework 
Directive. This allows to monitor the water quality in The Netherlands. Additionally, the data 
from the annual Landelijke Enquete Waterkwaliteit is accessible through the WKP. The 
database can be accessed here: https://www.waterkwaliteitsportaal.nl/wkp.webapplication. 
Another Dutch database is “De Bestrijdingsmiddelenatlas”. This database is focused on 
pesticides in the surface water. It covers up to 880 chemicals throughout The Netherlands. The 
data can be found here: https://www.bestrijdingsmiddelenatlas.nl/atlas/1/1  
 
Both of these are good resources for this project, with the limitation that they are focused on 
PPP (plant protection products). Therefore, their use for assessing mixture toxicity outside of 
PPP regulations is more limited. 

1.1.1.9. SWEDEN 

The Swedish databases are managed by the Swedish Agency for Marine and Water 
Management. In scope of this project, two datasets, which were generated from two separated 
monitoring programs, are considered: (i) Environmental data for lakes and water courses and 
(ii) Data of pesticides in surface water 
 
(i) Environmental data for lakes and water courses: 
This data has been collected since 1941. In the most recent data (2020), more than 4500 
sampling sites were taken acrossing Sweden with 103 variables. However, the monitoring 
program is only limited to water quality parameters and cations/anions. Thus, the dataset is 
considered not suitable to be further investigated in scope of this project.  
 
(ii) Data of pesticides in surface water: 
This dataset consists of monitoring data of plant protection products in surface water from four 
small agriculturally dominated catchments and two rivers in the south of Sweden from 2002 to 
2019. There are 176 PPP substances measured in this program. Even though the dataset has 
broad timeline and extending list of chemicals, this dataset is considered not suitable to be 
further investigated in this project due to its limited number of sampling sites.  
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1.1.1.10. UK 

The Historic UK Water Quality Sampling Harmonised Monitering Scheme (HSC) dataset was 
started in 1974. The dataset is large and includes 230 sampling sites all over UK. Despite the 
extensiveness of the dataset, most parameters covered in the scheme are water quality 
parameters (eg. dissolved oxygen, nitrates, orthophosphates) and metals. Only a few 
agrochemicals (7), industrial (4) and 2 PAHs substances are also covered in this monitoring 
program. Considering the limited number of substances measured, the UK’s dataset is 
considered not suitable to be further investigated in this project. 
 
 
  
1.2. DATA PROCESSING  

1.2.1. DATA SELECTION 

Several databases do not have a broad and complete set of monitored chemicals which limits 
co-exposure assessment. The databases are often collections of monitoring data taken by 
different entities which each have their own protocols and objectives. Understanding co-
exposure and multivariate statistical techniques assessing co-occurrence require a complete 
dataset i.e. for each row in the dataset (observation), all columns (variables) should contain 
values (detected or non-detected). For the chemical monitoring databases, this means that for 
each sampling time and location, a measurement should be available for each chemical in the 
dataset. The selected databases contain measurements for many chemicals (often 100+), but 
chemicals are often only measured in a subset of samples, and these subsets of samples do not 
necessarily overlap. Data selection is thus needed to maximize the number of locations and 
sampling times while retaining a high number of chemicals. An algorithm was used that iterates 
removal of chemicals with the lowest number of measurements and removal of samples with 
the lowest number of observedchemicals, until a complete dataset is retained. 
 
This data selection processing step greatly reduced the size of the datasets (see Table 2During 
data processing, a step is sometimes needed to summarize/aggregate the data, for a multitude 
of reasons: chemicals are not necessarily sampled on exactly the same date or on the same 
location; multiple samples were taken on the same data or multiple measurements were 
performed; the temporal resolution is not as required e.g. weekly while monthly measurements 
are needed; etc. By smart aggregation, the number of rows (locations and dates) and columns 
(chemicals) can be maximized. The ideal aggregation option will depend on the original 
database and is discussed for each database separately below. 
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) but allows to observe co-exposure in mixtures and perform the selected multivariate 
techniques. The data points lost are the locations where only a small number of chemicals were 
measured or the chemicals that were measured in a limited number of locations. This means 
there is a bias in the processed datasets for samples with many chemicals measured 
simultaneously. Mixtures of smaller number of chemicals might be missed, however, following 
this approach. 
 
During data processing, a step is sometimes needed to summarize/aggregate the data, for a 
multitude of reasons: chemicals are not necessarily sampled on exactly the same date or on the 
same location; multiple samples were taken on the same data or multiple measurements were 
performed; the temporal resolution is not as required e.g. weekly while monthly measurements 
are needed; etc. By smart aggregation, the number of rows (locations and dates) and columns 
(chemicals) can be maximized. The ideal aggregation option will depend on the original 
database and is discussed for each database separately below. 
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Table 2: Sizes of the databases before and after data selection. The number of observations can 
be interpreted as the number of measured mixtures with mixture size equal to the number of 
chemicals. 

 Before data selection After data selection 
Database Number of 

observations 
Number of 
chemicals 

Number of 
observations 

Number of 
chemicals 

Waterbase 579,882 452 27,666 76 
NORMAN 1,040 339 66 sites 19 
Rhine 840 (16 sites) 228 390 (8 sites) 71 
Danube 191 395 44 248 
EauFrance-Garonne 87721 401 3493 77 
Flanders 9,338 186 1,553 44 
UK 205,479 83 9,134 44 

 
 
When aggregating multiple measurements to one value, there are several options e.g. taking the 
mean of all measurements, the maximum, the 10th- or 90th percentile. Where needed, we chose 
to take the maximum of the measurements being aggregated: aggregation was typically done 
per month per location. By taking the maximum, we avoid issues with how to deal with 
detection limits when aggregating the data (see next section) e.g. how to take the average of 
three samples if two are below the detection limit. 
 
Finally, before analysis, the chemical concentrations were log-transformed (log(x+10-5) to be 
precise), to avoid issues where concentrations of 0 were reported). Additionally, the 
concentrations were standardized by subtracting the values by the mean (centering) and 
dividing by the standard deviation (scaling). This allowed easier comparison between chemicals 
which can have up to orders of magnitude differences in concentration. 

1.2.2. DEALING WITH DETECTION LIMITS 

It is more difficult to analyse the databases if a monitored chemical is not detected, especially 
when the majority of the samples are not detected. Such a result does not prove that the 
compound is not present or absent, it only shows that the concentration is somewhere between 
zero and the LOD (Limit of Detection).  
 
Dealing with detection limits for characterising co-exposure 
 
For the purpose of identifying and characterizing co-exposure, the issue of detection limits is 
somewhat circumvented since the absolute values of the environmental concentrations are less 
relevant (the values are transformed anyway). Only the relative values of environmental 
concentrations/detection limits are relevant because the main purpose of correlation analysis 
and principal component analysis is to identify relationship between variables, in this case to 
identify which chemicals co-occur in mixtures and which do not. For the purpose of the 
calculation, the detection limit was assumed as the observed concentration for all non-detects. 
This is not impacting the conclusions on co-exposure and identification of mixtures. 
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Dealing with detection limits for calculation of cumulative risk 
 
For the purpose of calculating cumulative risk, any assumption on the non-detects has an 
implication on the calculated cumulative risk and, therefore, this needs to be further considered. 
 
Assuming a zero concentration for all non-detects will therefore underestimate the total risk, if 
no additional knowledge about e.g. emission or use pattern is available (Gustavson et al., 2017). 
On the other hand, assuming that all non-detected compounds are present just below their LOD 
– the worst-case scenario that is still compatible with the recorded values – is also unrealistic. 
Such an approach immediately leads to the logical inconsistency that the estimated risk 
becomes simply dependent on the number of compounds analyzed. The same is true for setting 
the concentration used for the risk assessment a priori to any other value above zero (Gustavson 
et al., 2017). To further demonstrate this point, an example calculation is made as follows: 
assume a river sample of pristine origin (i.e. without any contaminants). The hazard index (or 
cumulative risk) is zero. Assume that chemical analysis is conducted for multiple contaminants, 
each will result in a non-detect. Setting the non-detects at the detection limit or any other value 
below the detection limit will generate a calculated artificial toxic pressure whereas the reality 
is there no toxic pressure. In Figure 6, the cumulative risk of the non-detects shows that 
substantial mixture pressure is already detected when the non-detects are present at the 
detection-limit both for the Adour-Garonne dataset and the Rhine dataset. Most of the mixture 
exposures are categorized under mixture Group I, which indicates that for these mixture 
exposures the detection limit of at least one of the substances is higher than the selected ecotox 
reference value (HC5). Price & Han (2011) also demonstrated higher hazard indices when 
detection limits are included in the mixture assessment. This analysis clearly shows that there 
is an issue with non-detects values when assessing cumulative risks for complex databases. In 
addition, it also clearly shows that the environmental threshold level should be taken into 
account when selecting chemical measurement techniques and its associated detection limit. 
 
Parametric and non-parametric statistical methods are available for data with “less-than” values, 
i.e. findings of concentrations < LOD. They allow the estimation of the likely contribution of 
non-detects to the total risk quotient. These methods typically can deal with non-detects as 
visualized in Figure 7 right. Parametric methods are largely not applicable since the 
distributional assumptions of parametric methods cannot be verified due to the higher number 
of non-detects (as visualized in Figure 7 left). Non-parametric methods avoid a distributional 
assumption but are nevertheless subject to empirical assumptions which require a minimum 
amount of detected values in order to provide robust results. These are not able to deal with 
high number of non-detects as in Figure 7 left. Figure 7 left describes a situation with so-called 
zero-inflation phenomenon, a data set with a lot of zero or close to zero values combined with 
a high detection limit: 80% non-detects can mean 20%<DL and 60% absent. 
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Figure 6: Plot showing the Maximum Cumulative Ratio as a function of the Hazard Index for the 
Adour-Garonne dataset (upper panel) and the Rhine dataset. Cumulative risks are shown only 
for the non-detects at their detection limit. (<DL=DL and >DL=0) 

 
A binary transformation can be applied in case of high number of non-detects. Here, the non-
detects are replaced by 0 and the detected concentrations are replaced by 1. Quantitative 
information on the concentration is lost in this transformation. This makes it less suitable for 
calculating toxic units. 
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Figure 7: Examples of frequency distributions: left a data set with a lot of zero or close to zero 
value combined with a high detection limit versus right a dataset combined with lower detection 
limit 

 
In summary, many of the available statistical techniques dealing with “less-than” values are not 
fit for data set with >50% of non-detected values. As a result, sensitivity analysis will be carried 
out using following two scenarios and considering the first scenario being more relevant: 

• Assuming zero concentration for all non-detects which is conceptually a best-case 
scenario but is probably closer to reality than the next scenario because of 1) the high 
number of non-detects (and potential the zero-inflation phenomenon) especially when 
expressed as hazard quotients or risk ratios and 2) in general, mixture interactions 
(including antagonism, potentiation, and synergies) usually occur at medium or high 
dose levels (relative to the lowest effect levels). At low exposure levels, they are either 
unlikely to occur or are toxicologically insignificant (SCHER, 2011). And 3) it is widely 
described in literature that typically only a handful substances contribute to the mixture 
hazard index or cumulative risk. 

• Assuming detection limit as the observed concentration for all non-detects, which is 
conceptually a worst-case scenario but is most likely unrealistic, especially when 
detection limit is close to the HC5 or PNEC. 

 
 

DL 



 

 19 

1.3. DATA ANALYSIS 

1.3.1. PRINCIPAL COMPONENTS ANALYSIS (PCA) 

1.3.1.1. BACKGROUND OF THE TECHNIQUE 

Principal components analysis (PCA) is a method to summarise, in a low-dimensional space, 
the variance in a multivariate scatter of points. In doing so, it provides an overview of linear 
relationships between objects and variables. This can often act as a good starting point in 
multivariate data analysis by allowing you to note trends, groupings, key variables, and 
potential outliers. 
 
The objective of a principal component analysis (PCA) is to determine the correlations between 
parameters in a dataset. Through data reduction, primary components (PC) are constructed by 
combining closely correlated parameters. Principal components are calculated from the 
eigenvectors of the covariance matrix of the data. The eigenvectors are the principal 
components of the ellipsoid determined by the covariance matrix (more or less the point cloud 
of the data). One requirement is that parameters should be linearly correlated. If not the case, 
this can be attained by performing data transformations, typically log transformations.  
 
To better interpret correlations between parameters, the principal components can be rotated 
using the technique called varimax rotation. The varimax rotations make it easier to attribute 
a given variable to a single component and the overall interpretability of the PCA may be 
simplified. This allows to select sets of variables that group together and will be used to identify 
common mixtures of chemicals. 

1.3.1.2. VISUALISATION WITH BIPLOTS 

The results of a PCA analyses are typically visualised using a biplot (Figure 8).  
• Distances between object points approximate the Euclidean distances between 

objects. Thus, objects ordinated closer together can be expected to have similar variable 
values.  

• Right-angled projections of an object point on a variable's vector (arrow) approximates 
the value of that variable for the chosen object 

• The length of a variable vector in the ordination plot reflects its contribution to the 
ordination. That is, variables with vectors which appear longer than others in a given 
ordination were more important in building the PCs (principal components) used in that 
ordination. The contribution of a variable to a particular PC can be approximated by 
projecting the "tip" of the vector onto the PC of interest. 

• Angles between variable vectors are meaningless 
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Figure 8: A PCA biplot. Points represent objects (rows). Red vectors represent the original 
variables (columns) used to build the PCs. Source: https://mb3is.megx.net/gustame/indirect-
gradient-analysis/pca. 

1.3.1.3. CO-EXPOSURE OF CHEMICALS WITH PCA 

Within this project, PCA was used to  
• Identify common and rare groups of sites with co-exposure as well as combinations of 

chemicals that do not co-exist (based on the position and the distance between points 
(sites)). Clustering of sites indicate sites that have a similar exposure profile and are thus 
interesting to group for further analyses. 

• Identify sites with high (“hot spots”) or low observed exposure concentration for the 
pre-dominating multiple chemicals (based the position of the points to the axis).  

• Assess correlation or absence of correlation (independence) between chemicals based 
on the length of the arrows and their angle. 

The PCA analysis will identify sites with similar exposure sites as well as identify the 
substances that are most correlated with the variation in the datasets. This will help prioritize 
which sites and most likely combinations of mixtures of mixtures of concern should be 
prioritized on in the subsequent analyses. 
 
Rather than assessing individual chemicals, it is also proposed to assess use categories and/or 
chemical group (such as done in Busch et al., 2016 as shown in Figure 9) in relation to co-
exposure. This allows to simply the analysis of multiple chemicals at the same time and to cover 
relevant unmeasured industrial chemicals and pharmaceuticals. 
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Figure 9: Use categories of organic compounds detected in European rivers (Busch et al. 2016). 

1.3.2. UNDERSTANDING CO-EXPOSURE PATTERNS 

From the data analyses, (groups of) sites (hotspots) will be identified that are most similar and 
(groups of) substances that are strongly correlated. Based on further exploration of these sites 
and substances, common patterns will be investigated. Options include: 

• Characteristics of the clustered sites: are they situated on the same river? With the 
same/similar river characteristics (e.g. river size, stream velocity)? Are they clustered 
geographically (Country? Region?), … 

• Applications and use of the selected chemicals. Are they agrochemicals, industrial 
chemicals, pharmaceuticals, household chemicals, …? Typical industries they are used 
in? Figure 1, for example, shows that the co-exposure of chemicals exists for PAH, as 
well as for herbicides. The former can be linked to an emission pattern from households 
and industry whereas the latter can be linked to an emission pattern of agricultural 
activities. 

• Short-term use (periodical applications) or long-term use? 
• Are they in the same chemical class?  

 
Next, the common use patterns have been assessed for the identified typical mixtures. Several 
hypotheses can be put forward: typical mixtures or co-occurrence of chemicals can be 
explained by (see Figure 10): 

• The use pattern (sources of household, industry, agricultural use), e.g., presence of 
pharmaceuticals is likely long-term use, and would be found downstream of WWTP 
(wastewater treatment plant), e.g., some plant protection products would be found near 
agricultural operations. The use pattern is also related to the chemical legislation 
(REACH, PPP, pharmaceuticals, etc…) 

• Spatial factors, e.g., upstream river catchments would result in less complex mixtures, 
downstream river catchments result in more complex mixtures both in terms of number 
of chemicals as well as different type of chemicals/sources/use pattern 

• Temporal factors, e.g., some agrochemicals may only be present seasonally.  
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Whilst all hypotheses will likely have impact on the co-occurrence of chemicals, analysis of the 
various data sets demonstrated that typical mixtures are mostly explained by their use pattern 
and spatial factors.  
 

 

Figure 10: Chemical co-occurrence depends on chemical use pattern, spatial and temporal 
factors. 

1.3.3. REDUNDANCY ANALYSIS (RDA) 

Redundancy analysis (RDA) is a method to extract and summarise the variation in a set of 
response variables (here: biological impact indices) that can be explained by a set of explanatory 
variables (here: chemicals and other water quality indices). More accurately, RDA is a direct 
gradient analysis technique which summarises linear relationships between components of 
response variables that are "redundant" with (i.e. "explained" by) a set of explanatory variables. 
RDA can also be considered a constrained version of principal components analysis (PCA), 
wherein canonical axes - built from linear combinations of response variables - must also be 
linear combinations of the explanatory variables. The RDA approach generates one ordination 
in the space defined by the matrix of response variables and another in the space defined by the 
matrix of explanatory variables. 
  
RDA ordinations may be presented as a biplot or triplot (Figure 11).  

• Ojects ordinated closer together can be expected to have similar variable values. This 
will not always hold true, as RDA only recovers part of the variation in the data set. 

• Right-angled projections of object points onto vectors (arrows) representing response 
variables approximate variable values for a given object. 

• The angles between vectors representing response variables are meaningless. 
• The angles between vectors representing response variables and those representing 

explanatory variables reflect their (linear) correlation. 
• The length of vectors reflects their correlation with a given RDA-component. Long 

vectors nearly parallel to the axes reflect strongly correlated variables, short vectors 
indicate low correlations. 
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Figure 11: Schematic representation of a) an RDA biplot and b) an RDA triplot. a) An RDA biplot 
ordinates objects as points and either response or explanatory variables as vectors (red arrows). 
Levels of nominal variables are plotted as points (red). b) In a triplot, objects are ordinated as 
points (blue) while both response and explanatory variables (red and green arrows resp.) are 
plotted as vectors. Levels of nominal variables are plotted as points (green). 
Source: https://mb3is.megx.net/gustame/constrained-analyses/rda 

1.3.4. GENERALIZED LINEAR MODELS (GLM) 

Generalized Linear Models (GLMs) are a more general form of traditional linear models 
(regressions) with the advantage that the error structure does not have to be normally 
distributed. In GLMs, the value of a response variable can be expressed as a combination of 
predictor variables using a linear equation: 
 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 	𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 𝛽! ∙ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟1 + 𝛽" ∙ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟2 + 	𝜀 
 
The value of the respose variable is determined by the sum of the intersection (response value 
when all predictor variables are zero), the values of predictor variables multiplied by their 
respective coefficients 𝛽 and the remaining error 𝜀. 
 
Here, GLMs are used to determine whether the toxic pressure of mixtures significantly 
contributes to the value of the selected biological index. The significance of the mixture 
pressure will be evaluated compared to other water quality variables such as nutrients.  
To evaluate the significance of predictor variables, stepwise model selection was used. Two 
methods were combined by the algorithm (stepAIC from the R-package MASS): forward and 
backward selection. Akaike Information Criterion (AIC), a parameter for the likelihood of the 
model, was used to select the optimal model. In forward model selection, the algorithm starts 
with the most simple model (no predictor variables) and evaluates which predictor variables in 
the model lower the AIC. Backwards model selection starts from the most complex model (all 
predictor variables and their interactions) and evaluates the reduction in AIC by removing 
predictor variables. The algorithm proceeds step by step, adding/removing the predictor 
variable with the most impact on the AIC. The model with the lowest AIC is considered the 
optimal model i.e. the most likely model. 
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Statistical models are simplifications of reality, based on a number of assumptions. To be 
certain of the validity of statistical models, these assumptions need to be validated. For the 
GLM, the following model assumptions were evaluated: 

• Multicollinearity: high correlations between multiple predictor variables is an issue as 
this distorts the relationships between predictor and response variable. Only one of 
colinear parameters should be included. To evaluate multicollinearity, the Variance 
Inflation Factor (VIF) was used. For the monitoring data, a VIF of 5 was used as a 
boundary for issues with multicollinearity. 

• The error structure of the GLM should be correctly distributed e.g. follow a normal 
distribution. The model residuals should show Homoscedasticity (same error across all 
variables) and show no pattern after the model has been applied. These model 
assumptions are visually evaluated using residual versus predictor plots, QQ-plots and 
observed versus predicted plots. 

 

1.4. MIXTURE RISK 

For the cumulative risk assessment, the focus was made on those datasets supporting the 
identification of mixtures of concern for cumulative risk and/or ecological risk (risk identified) 
which would merit a review using the approach of the CEFIC MIAT decision tree for assessing 
effects from exposures to multiple substances, which may include an assessment of Toxic Unit 
(TU). For the cumulative risk assessment, two databases were selected: i.e. the Eau-France – 
Adour/Garonne region and the Rhine database. The Eau-France Adour/Garonne region 
represents a dataset with samples covering a large area and substances from different sources 
which are covered by different legislations. The Rhine database represents a hot-spot example, 
with a limited number of sampling points.  

1.4.1. CALCULATION OF MIXTURE RISK 

As a conservative first tier assessment, cumulative risks of a mixture was assessed with the 
concentration addition-based Toxic Unit approach. This approach assumes that substances act 
via a common mode of action. In addition, it is assumed that all substances contribute to the 
mixture pressure, even at very low concentrations, proportionally to its Toxic Unit. The 
concentration addition model is generally considered to be a conservative approach (e.g. 
Cedergreen et al. 2008). The Toxic Unit of a chemical (TUi) is expressed as the measured 
environmental concentration of the chemical divided by an effect concentration (e.g. EC10, 
NOEC, EC50) of that chemical (e.g. TUi=concentration/EC10). Cumulative pressure imposed by 
a mixture is then expressed by summing the individual substance TUi to the mixture toxic unit 
(TUmix=STUi). Although the TU method has originally been developed for summing TU at the 
species level (i.e. using effect levels), in the context of environmental regulation, the concept is 
often used to sum Toxic Units based on environmental threshold levels such as PNECs or HC5s 
(i.e. sum concentration/ PNEC or HC5). For the current analysis, it was decided to use the HC5 
threshold instead of PNECs. This is because PNECs were deemed less appropriate to 
understand mixture impacts because PNECs are not predictive of effects as they imply a 
regulatory based uncertainty assessment in addition to the effect assessment. 
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In the present study, the Hazard Quotient (HQ)/Hazard Index (HI) approach has been used to 
estimate cumulative risks in the current study (Price et al. 2012, OECD 2018). The Hazard 
Quotient (HQ) is the ratio of an environmental concentration relative to the environmental 
threshold for an individual substance (eq. 1). The environmental threshold level selected in the 
present study is the HC5s. The Hazard Index (HI) is the summation of the HQ of all substances 
in the mixture (eq. 2). 
 
𝐻𝑄! =

"!
#$%!

   (Eq. 1). 
𝐻𝐼 = ∑𝐻𝑄!   (Eq. 2)  
 
Within the HQ/HI approach, a HI>1 indicates that there are unacceptable risks associated with 
the cumulative exposure.  

1.4.2. SELECTION OF EFFECT DATA 

In practice, HC5 values were calculated based on log chronic NOEC/EC10 and the slope of the 
species sensitivity distribution (SSD) collated by Posthuma et al. (2019). The dataset of 
Posthuma et al. (2019) consists of parameters (median and standard deviation of log-
transformed toxicity data) of log-normal SSDs for 12 386 chemicals. Separate parameters are 
published for both the acute and chronic SSD. Toxicity data for the derivation of the SSDs was 
collated from different sources, such as the US EPA’s ECOTOX database, REACH data. For 
substances for which insufficient toxicity data could be extracted, Posthuma et al. (2019) used 
read-across approaches to estimate the remaining SSD-parameters. SSDs parameters were 
derived when toxicity data for at least 3 species was retrieved. Remaining datagaps between 
acute and chronic SSDs were tackled with extrapolation factors (Posthuma et al. 2019). We 
extracted the necessary data from the Posthuma et al. (2019)-database based on CAS-numbers. 
If an exact match was not found, the search was repeated based on the substance name. For a 
few substances, no match based on CAS-number of substance name could be found, for these 
substances an environmental threshold level was derived from the WFD-directive (i.e. annual 
average-environmental quality standard (AA-EQS), EC 2013/39/EU).  
 
Table 3 shows the different quality categories for the chronic SSDs selected from Posthuma et 
al. (2019). For the Rhine dataset, 67% of the chronic SSDs were not extrapolated (i.e. they were 
derived based on chronic toxicity data). 29% of the chronic SSDs were extrapolated based on 
acute EC50 SSD and 4% based on the acute NOEC SSD. For the Adour-Garonne dataset, 51% 
of the chronic SSDs were not extrapolated (i.e. they were derived based on chronic toxicity 
data). 29% of the chronic SSDs were extrapolated based on acute EC50 SSD and 7% based on 
the acute NOEC SSD. For 10% of the substances, the chronic SSD was extrapolated from a 
poorly presented Acute SSD, implicating that the acute SSD was derived from read across or 
that the acute SSD contained only 1 toxicity data point. For the remaining substances, there was 
no match found within the Posthuma database, for these data other sources were used to obtain 
an effect threshold. 
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Table 3: Data quality of SSD parameters extracted from the database of Posthuma et al. (2019) 
for the Adour Garonne and Rhine dataset. Numbers indicate number of substances belonging to 
each category. 
 

SSD extrapolation category Number of species in SSD Rhine Adour-
Garonne 

Chronic NOEC not 
extrapolated 

Officially enough species (>10) for 
ERA with SSDsa 

34 36 

Enough species (6-10) for ERA 
with SSDs 

- 1 

Marginally enough species (3-5) 
for ERA with SSDs 

- 2 

Chronic NOEC extrapolated 
from Acute EC50b 

Officially enough species (>10) for 
ERA with SSDs 

12 11 

Enough species (6-10) for ERA 
with SSDs 

3 4 

Marginally enough species (3-5) 
for ERA with SSDs 

- 7 

Chronic NOEC extrapolated 
from Acute NOECc 

Officially enough species (>10) for 
ERA with SSDs 

2 2 

Marginally enough species (3-5) 
for ERA with SSDs 

- 3 

Chronic NOEC extrapolated 
from poorly presented Acute 
SSDd 

Acute EC50 for 1 species - 1 
Read across - 7 

Other sources: WFD-EQS, Restriction dossier - 3 

Total number of substances considered in cumulative risk 
estimation 

51 76 

a ‘Officially enough species’ refers to the minimal sample size put forward for the use of statistical 
derivation methods as described in the Technical Guidance Document on Risk Assessment (EC 2003). 
b An extrapolation factor of 10 was applied by Posthuma et al. (2019) to extrapolate from acute EC50 to 
chronic NOEC, i.e. the acute EC50s were divided by 10. 
C An extrapolation factor of 9 was applied by Posthuma et al. (2019) to extrapolate from acute NOEC to 
chronic NOEC, i.e. the acute NOECs were divided by 9. 
d

 An extrapolation factor of 10 was applied by Posthuma et al. (2017) on the median acute EC50 calculated 
from read-across or the poorly represented acute SSD, and a slope of 0.7 was assumed (Posthuma et al. 
2019). 
 
 
Table 4 and Table 5 give an overview of the 5% hazardous concentrations calculated from the 
SSD-parameters published by Posthuma et al. (2019).  
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Table 4: Overview of 5% hazardous concentratiog (HC5) calculated based on the SSD parameters 
published by Posthuma et al. (2019) for the substance detected in the Rhine database, ranked 
from lowest HC5 to highest HC5. 

Toxicity range Chemical (toxicity threshold in µg/L) 
1 – 10 ng/L benzo(ghi)perylene (3.3 e-3); ethyl-parathion (4.1 e-3); diazinon (7.8 e-3) 
11-100 ng/L azinphos-ethyl (1.1 e-2); benzo(b)fluoranthene (5.2 e-2); benzo(k)fluoranthene (5.2 

e-2); indeno(1,2,3-cd)pyrene (8.3 e-2)  
101-1000 ng/L malathion (1.9 e-1); Isoproturon (2.3 e-1); benzo(a)pyrene (2.3 e-1); 

chlorfenvinphos (2.9 e-1); trifluralin (3.7 e-1); diuron (3.9 e-1); methyl-parathion (4.4 
e-1); Methabenzthiazuron (768); Linuron (930) 

1-10 µg/L cadmium dissolved (1.0); Metolachlor (1.1); Fenitrothion (1.9); 
Hexachlorobutadiene (2.0); Fluoranthene (2.1); Simazine (2.1); Atrazine (2.2); 
atrazine-desethyl (2.2); terbuthylazine (2.5); nickel (Ni) dissolved (2.8); copper (Cu) 
dissolved (3.9); zinc (Zn) dissolved (6.2); Monolinuron (6.8) 

11-100 µg/L chromium (Cr) total (11.9); 1,2,3-trichlorobenzene (12.9); Bentazone (13.3); 
Alachlor (15.5); 1,2,4-trichlorobenzene (16.3); lead (Pb) dissolved (18.4); 
Dimethoate (20.0); Chlorotoluron (21.3); 1,3,5-trichlorobenzene (29.4); 1,2-
dichlorobenzene (33.1); Dichlorprop (45.0); 1,4-dichlorobenzene (57.2); 2,4-
dichlorophenoxy acetic acid (86.5) 

101-1000 µg/L Naphthalene (104); MCPA (315); Mecoprop (599); Benzene (711); Trichlorethene 
(756) 

>1000 µg/L Tetrachloromethane (2547); Trichloromethane (3194); 1,2-dichloroethane (3492) 
;MTBE (methyl tert-butyl ether) (5207) 
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Table 5: Overview of 5% hazardous concentratiog (HC5) calculated based on the SSD parameters 
published by Posthuma et al. (2019) for the substance detected in the Adour-Garonne database, 
ranked from lowest HC5 to highest HC5. 

Toxicity range Chemical (toxicity threshold in µg/L) 
<1 ng/L Tributylstannane (6.3e-4) 
1 – 10 ng/L - 
11-100 ng/L N-Cyclopropyl-N'-(1,1-dimethylethyl)-6-(methylthio)-1,3,5-triazine-

2,4-diamine (1.1e-2); estrone (1.2e-2); Total DDDpp', DDEpp', 
DDTop', DDTpp' (2.5e-2)a 

101-1000 ng/L Anthracene (1.3e-1); PBDE (1.4 e-1); Ibuprofen (2.3 e-1); 
Benzo(a)pyreen (2.3 e-1); Lindane (3.7 e-1); 2-Hydroxy Ibuprofen | 
Hydroxyibuprofen (7.1 e-1); Triclocarban (7.9 e-1) 

1-10 µg/L Perfluoroctaansulfonaat (PFOS) (1.1); Triclosan (1.1); Chloroacetic 
acid (1.3); Sulfametoxazol (1.7); paracetamol (1.9); 4-Nonylphenol, 
Branched (2.0); Hexachlorobutadiene (2.0); Fluoranthene (2.1); 
Karbamazepin (2.1); 4-(1,1,3,3-Tetramethylbutyl)phenol (2.3); 
Cyanide (3.2), Hexachlorobenzene (3.3); (1 alpha,2 alpha,3 beta,4 
alpha,5 beta,6 beta)1,2,3,4,5,6-Hexachlorocyclohexane (3.5); 
Pentachlorphenol (3.5); Bisphenol-A (7.4); 1,2,3,4,5-
Pentachlorobenzene (7.4); benzyl butyl phthalate (9.5) 

11-100 µg/L 1,2,3-Trichlorobenzene (12.9); 1,2,4-Trichlorobenzene (16.3); bis(2-
ethylhexyl) phthalate (16.7); dibutyl phthalate (17.3); Niflumic acid 
(17.3); 4-Chlorophenol (20.1); Oxazepam (25.0); 1,3,5-
Trichlorobenzene (29.4); Bromomethane (35.1); Norethindrone 
(41.6); 2,4-Dinitrotoluene (48.9); Fenofibrate (51.6); Ketoprofen 
(60.1); Trichlorobenzene (65.5); 1,1'-Oxybis[2,4-dibromobenzene] 
(73.9); PFHxA (perflurohexanoic acid) (86.0)b; PFHxS 
(perfluorohexane-1-sulphonic acid) (86.0)b; 10,11-Dihydro-10,11-
epoxycarbamazepin (93.0); p-cresol 
(99.7) 

101-1000 µg/L Naphthalene (104); o-cresol (105); 2,6-Dinitrotoluene (128); 1,2-
Dibromoethane (134); (Chloromethyl)oxirane (159); 1,1,2,2-
tetrachloroethane (275); sodium [2-[(2,6-
dichlorophenyl)amino]phenyl]acetate (305); Nitrobenzene (333); 
Tetrachloroethylene (514); propyl 4-hydroxybenzoate (515); Diethyl 
phthalate (636); ethyl 4-hydroxybenzoate (671); Carboxyibuprofen 
(674); Cyclophosphamid (685); Pentadecafluorooctanoic acid (695); 
Benzene (711); trichloroethylene (756); dimethyl phthalate (782) 

>1000 µg/L 1,1,2-Trichloroethane (1184); Tetrachloromethane (2547); 
Trichloromethane (3194); 1,2-Dichloroethane (3492); tert-butyl 
methyl ether (5207); Vinyl chloride (7433); Perchlorate (13791); 
Dichloromethane (14854) 

a For “Total DDDpp', DDEpp', DDTop', DDTpp'”, the AA-EQS was selected (EC 2013/39/EU). 
b For PFHxA and PFHxS, the lowest acute EC50 (i.e. EC50 of 86 mg/L for Scenedesmus 
subcapitatus) was selected from the Annex XV restriction report2 on which an assessment factor of 
1000 was applied.  
 
  

 
2 https://echa.europa.eu/documents/10162/c4e04484-c989-733d-33ed-0f023e2a200e) 
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The current approach with a first level assessment using the Hazard Index approach based on 
summing of TU of HC5s builds in several levels of conservatism relative to: 
 

1) The use of HC5s from Posthuma et al. (2019) instead of PNECs: due to the 
incorporation of an assessment factor, PNECs tend to be lower than the HC5s used in 
the present study. Hence, when using PNECs, risks will be ‘flagged’ at lower 
concentrations. However, this depends on the (group of) chemicals: for some of the 
driving chemicals, the HC5 derived from the dataset of Posthuma et al. (2019) appeared 
to be very conservative relative to other sources. For instance, for the polycyclic 
aromatic hydrocarbon benzo(ghi)perylene, the HC5 derived from Posthuma et al. (2019) 
was observed to be 100-fold lower than the PNEC value derived based on the target 
lipid model (Redman et al. 2017). Refining the Hazard Index/Hazard Quotient approach 
using target lipid model based PNECs for PAH, while using the HC5s derived from 
Posthuma et al. (2019) for all other substances, resulted in substantially lower risk 
predictions. While 54% of the mixture exposures were predicted at risk in the initial 
analysis for the Rhine dataset, after the refinement of the effect levels for PAHs, only 
16% of the mixture exposures were predicted to be at risk. Further refinements on the 
key contributors (e.g. by considering toxic mode of action) is likely to further reduce 
the number of mixtures at (potential) risk. This example clearly shows that the dataset 
of Posthuma et al. (2019) can be used as a first tier assessment, but that further 
refinements in the methodology can shed a different light on actual risks. 

 
2) Bioavailability of inorganics and organics: the bioavailability and toxicity of both 

inorganics and organics can be dependent on the characteristics of the receiving water. 
For instance, the toxicity of ionizable organic compounds (IOCs) is highly dependent 
on pH, mainly because the uptake and bioaccumulation of IOCs is pH dependent 
(Escher et al. 2020). Another example are metals, for which toxicity is highly dependent 
on physico-chemistry characteristics such as Dissolved Organic Carbon, pH, and 
hardness (Mebane et al. 2020). Using generic environmental threshold levels for 
mixture pressure assessments leads inevitably to a certain degree of conservatism 
relative to site-specific environmental threshold levels. These site-specific 
environmental threshold levels may for instance be calculated with ion-trapping and 
toxicokinetic models (IOCs) or biotic ligand models (metals). However, site-specific 
bioavailability corrections are often ‘data-hungry’ and complex requiring expert-level 
knowledge, although simplified models are available for certain compounds. 

 
3) Additional conservatism is incorporated in the assessment by applying the 

concentration addition method on an environmental threshold level such as the 
HC5. It has been shown that this method incorporates a substantial margin of safety 
relative to more complex methods such as applying the concentration addition method 
at the species or trophic level or relative to the independent action model (Backhaus & 
Faust 2012, Gregorio et al. 2013, Van Regenmortel et al. 2017, Nys et al. 2017). 
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Figure 12: The different mode of actions in the mixtures observed in the Rhine basin 
demonstrates that a toxic unit approach is a conservative lower tier assessment as in reality, 
additivity is only to be assumed for substances in mixtures with the same mode of action. 
Percentage indicates the percentage of substances with a specific mode of action. 
 

1.4.3. DEALING WITH NATURALLY OCCURING SUBSTANCES 

Naturally occurring substances, such as metals, may even in pristine situations result in a 
geochemical or biological background concentration. It has been argued that some of the risk 
evaluation methods, such as the HI/HQ approach, are not suitable for naturally occurring 
substances, as they might predict risks below natural background concentrations (Van 
Regenmortel et al. 2017, Nys et al. 2018). This is further complicated in the case of essential 
elements for which regulatory limits might be set in the range where deficiency occurs (Meyer 
et al. 2015). For instance, Nys et al. (2018) showed that 13% of water samples from a database 
representing geochemical baseline concentrations in pristine European waters (i.e. the 
FOREGS database) are considered to be at risk using the HI/HQ approach (i.e. HI>1), even 
after correction for local bioavailability conditions (using BLM) when only the following 5 
metals are considered: Zn, Ni, Cu, Cd and Pb. This observation of potential concerns predicted 
with the HI/HQ approach at metal background concentrations is further corroborated by the HQ 
calculations using the lower 10th percentile of metal concentration in the geochemical baseline 
FOREGS database relative to the HC5 derived from the Posthuma et al. (2019) database. These 
lower 10th percentiles of metal concentration in the geochemical baseline FOREGS database 
are considered to be background concentrations of metals in European waters (Table 6). 
Especially for Cu, Zn and Ni relatively high HQ values are observed at background 
concentrations, with HQs ranging between 0.22 (Cu) and 0.67 (Ni) (Figure 13). The HI 
associated with the background concentrations in European waters is 1.4, indicating that even 
at background concentrations the HI/HQ approach calculates unacceptable risks of mixture 
exposure.  
To account for background concentrations, the added concentration approach has been used for 
naturally occurring substances. The added (risk) approach assumes that species are fully 
adapted to the natural background concentration and therefore contributes to the toxicity. This 
approach accounts for background concentrations of naturally occurring substances by 
subtracting the natural background from the measured environmental concentration.  
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Figure 13: Predicted risk associated with background concentrations of metals. Risks are 
expressed as Hazard Quotient (HQ=conc/HC5). Metal background concentrations are the 10th 
percentile of metal concentrations derived from the FOREGS database (Table 6). The FOREGS 
database represents geochemical baseline conditions in pristine waters across Europe. The HC5 
used to calculate the HQ was derived from Posthuma et al. (2019). 

 
Table 6: Overview of background concentrationsa of metals in European surface waters. 

Metal Background concentration (µg/L) 
Cd 0.01 
Cr 0.38 
Pb 0.09 
Cu 0.88 
Zn 2.68 
Ni 1.91 

a Background concentrations are represented here as the lower 10th percentile of metal concentrations in the 
FOREGS database 

1.4.4. CEFIC MIAT DECISION TREE 

The HQ/HI approach has also been integrated in the CEFIC-MIAT decision tree (Price et al. 
2012). However, the environmental threshold level for the Tier 1 assessment proposed by Price 
et al. (2012) is the PNEC or EQS, instead of the HC5. In analogy with the CEFIC-MIAT 
decision tree, a differentiation was made between risks driven by individual substances and 
mixtures based on the concept of Maximum Cumulative Ratio (MCR). The MCR is the ratio of 
the total toxicity to the largest toxicity from a single chemical stressor (Eq. 3, Price & Han 
2011).  
 
𝑀𝐶𝑅 = #&

'()#*!
   (Eq. 3) 

 
The MCR can range from 1 to n (with n the number of chemicals in the exposure). Values close 
to 1 indicate that one chemical dominates the mixture toxic pressure. An MCR equal to n 
indicates that the receptor is exposed to equitoxic doses of all chemicals. 
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The grouping of mixture exposures into different categories based on the HI and MCR helps to 
identify the mixtures of concern and support risk management decisions (Price et al. 2012). In 
practice, four exposure groups are distinguished. 

• Group I: Combined exposures that are a potential concern because one or more 
individual chemicals are a concern: i.e. at least one of the HQi>1 

• Group II: Combined exposures where there is a low concern for both individual 
chemicals and for their combined effects: i.e. HI<1 

• Group IIIa: combined exposures where there is a low concern for individual chemicals 
but there is a potential concern for the combined effects; one chemical provides the 
majority of toxicity of the combined exposures: i.e. all HQi<1, HI>1 and MCR<2 

• Group IIIb: combined exposures where there is a low concern for individual chemicals 
but there is a potential concern for the combined effects; no one chemical is dominating, 
i.e. all HQi<1, HI>1 and MCR>2 

Figure 14 shows the different groups as a function of the hazard index and maximum 
cumulative ratio. In the context of environmental regulation, Group I exposures are regulated 
by single-substance regulations. For Group II mixtures, risks are considered to be of ‘low 
concern’. Group III exposure are of main concern in the context of mixture toxicity. This is 
because the cumulative risk observed in these exposures cannot be assessed by current 
substance-by-substance legislation. Group IIIa mixtures can be remediated by targeting the 
substance that is responsible for the majority of the cumulative risk. Group IIIb represent the 
complex mixtures, which should be further addressed.  
 

 
Figure 14: Plot showing the Maximum Cumulative Ratio as a function of the Hazard Index. The 
colored regions indicate the different exposure groups to differentiate between mixture exposure 
risks (see text for interpretation of different groups). 

1.4.5. REFINEMENT BASED ON MODE OF ACTION 

The Hazard Index/Hazard Quotient approach is a rather conservative approach to estimate 
cumulative risk of mixtures (Backhaus & Faust 2012, OECD 2018, EFSA 2019). It can be 
expected that the underlying assumption of the concentration addition mixture reference model 
that all substances in the mixtures have a common mode of action is often violated for complex 
environmental mixtures. The competing concept of independent action (IA), maybe used in 
higher tier assessments, when there is an indication of multiple modes of action (e.g. Backhaus 
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& Faust 2012). When applied on SSDs of the individual mixture constituents, the IA calculates 
the mixture pressure expressed as multi-substance potentially affected fraction based on the 
product of the fraction of species not affected by each of the individual mixture constituents 
(Traas et al. 2002). A hybrid method (msPAFMoA) combines the hazard index approach for 
substances with the same mode of action with the independent action model to calculate an 
msPAF for complex mixtures with both shared and different modes of actions (Traas et al. 
2002; De Zwart and Posthuma 2005, Parkerton et al. 2018), such as in the environmental 
samples under study. Mode of Actions of the different substances were extracted from the 
database of Kienzler et al. (2017). Preference was given to the mode of action from the EPA 
Mode of Action and Toxicity database (MOAtox). If no Mode of Action from MOAtox was 
reported, the MoA of the ASsessment Tool for Evaluating Risk (ASTER) QSAR application 
was selected. 
 
In practice, a refinement of the mixture pressure calculations was done for all Group III 
mixtures using the hybrid msPAFMoA which combines calculation of a HI per MoA 
(concentration addition based) with the independent action model to calculate a msPAF for the 
entire mixture exposure. This is done in three steps. First, a separate Hazard Index for each of 
the modes of action j (HIMoAi) was calculated, by summing all Hazard Quotients of a specific 
Mode of Action (MoAj). The HIMoAj was calculated using the median chronic NOECs, extracted 
from Posthuma et al. (2019) as denominator (HIMedian NOEC,MoAij; Eq. 4).  
 
𝐻𝐼+,-!./	123$,567" = ∑𝐻𝑄+,-!./123$,567" = ∑

"!#$%"
+,-!./	"896/!"	123$!#$%"

 (Eq. 4)  

 
Second, the Potentially Affected Fraction of the species by MoA j (PAFMoAj, was then 
calculated assuming a log-normal distribution, with the excel function NORMDIST using the 
log-transformed HImedian NOEC,MoAj. When a Mode of Action was represented by several 
substances the slope for PAFMoAj calculation was calculated by averaging the SSD slopes of all 
substances belonging to the specific MoA. If only one substance was representing a certain 
Mode of Action, the substance-specific SSD slope, extracted from Posthuma et al. (2019) was 
used. Finally, the multi substance Potentially Affected Fraction (msPAFMoA) of the mixture 
exposure was calculated by multiplying the fraction of species not affected by each of the 
Modes of Action present in the mixture exposure (eq. 5) 
 
𝑚𝑠𝑃𝐴𝐹567 = 1 −∏(1 − 𝑃𝐴𝐹567!) (Eq. 5) 
 
The hybrid method can be seen as a higher tier assessment compared to the HI/HQ approach 
applied as conservative first tier, because the concentration addition method tends to be more 
conservative and less accurate compared to the independent action model for mixture exposures 
with different modes of actions both at the level of mixture effects as on mixture risks (e.g. 
Faust et al. 2013, Van Regenmortel et al. 2017, Nys et al. 2018). 
It should be noted that similar as for the concentration addition model in the HI/HQ approach, 
the application of the independent action model on the SSD to calculate a msPAF is a pragmatic 
choice, that is not entirely consistent with theoretical mixture reference. This is because both 
mixture reference models are theoretically consistent when applied on the species level (i.e. 
used for a specific species instead of an SSD). However, applying the mixture reference models 
in a theoretical consistent way for complex mixtures is not practical as suggested in higher tiers 
for example by OECD (20180, as these approaches are very data-demanding and 
computationally intensive (at least for the independent action model) (e.g. Van Regenmortel et 
al. 2017).  
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2. TECHNICAL ANNEX B: ENVIRONMENTAL CO-EXPOSURE 

2.1. WATERBASE 

2.1.1. DATA PROCESSING 

The original database is available as a long list in the format i.e. one individual measurement 
for one chemical per row. A first step was to aggregate this to ‘samples’ i.e. chemicals that co-
occur as part of the same mixture.  

• Chemicals that were measured on the same location and in the same month and year 
were considered part of the same sample.  

• If multiple measurements of the same chemical were available per sample, the 
maximum of the values was taken.  

• Measurements below the detection limit were set to half the reported detection limit.  
This resulted in a dataset of 579,882 rows (samples) and 452 columns (chemicals). The dataset 
contains measurements from 1974 to 2019, but the most measurements are available from 2000 
onwards. Data from 36 European countries are present, most notably from France (176,534 
samples), UK (76,373), Italy (55,724), Poland (36,575), Finland (36,503), Austria (36,955) and 
Hungary (22,635). 
 
This dataset consisted of incomplete samples i.e. not all 452 chemicals were present in the 
samples. For the PCA analysis, a dataset with complete samples is required. Further data 
processing was done and a final dataset for analysis was prepared with 27,667 samples (i.e., 
mixtures) and 72 chemicals. The samples in this dataset were taken between 2008 and 2018 in 
France only. The final dataset contains 58 agrochemicals, 10 industrial chemicals, 4 PAHs and 
3 metals (some chemicals have dual use e.g. agrochemical and industrial). 27 of the 72 
chemicals are priority pollutants. Before PCA analysis, the chemical concentrations were log-
transformed and standardized. 
 
2.1.2. OBSERVED MIXTURES 

The PCA analysis explained a large part of the variance in the dataset: 68.7% of the variance 
was explained by the first three components. The biplot indicated a satisfactory PCA analysis, 
with clear clusters of sites (points in the biplot) and the chemicals showing clear correlations 
with the principal components (Figure 15). 
 
The Varimax loadings give a quantitative indication for which chemicals are most correlated 
with the principal components (Table 7). The first component is a mix of chemicals belonging 
to the different chemical groups in the dataset (agrochemicals, industrial chemicals, metals and 
PAHs). The positive varimax scores indicate a mixture of a broad group of chemicals with no 
immediate explanation for their co-occurrence (but see next section). On the other side of the 
first component, a small subset of chemicals can be identified: chlorsulfuron, simazine, 
metribuzin, heptachlor, dichloromethane. Possibly, this reflects a more agricultural mixture, 
although dichloromethane is an industrial chemical. Nevertheless, the analysis indicates that 
chemicals on the positive side of the first principal component tend to not co-occur with 
chemicals on the negative side. The second principal component is similarly a mixture of all 
chemical groups, although metals are less prominent. Again, the positive varimax scores 
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indicate a wide mixture of co-occurring chemicals while the negative side suggests a smaller 
mixture (all agrochemicals: chlorpyrifos, terbutryn, DDT, alachlor) that does not co-occur with 
the others. The third principal component contains almost exclusively agrochemicals, with no 
chemicals with a negative varimax scores. This suggests the PPP mixture only occurs in areas 
with high agriculture pressure. 
 
 

 
Figure 15: Biplot for the Waterbase PCA. 
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Table 7: Varimax loading scores for the three principal components of the Waterbase PCA. Only 
the varimax scores >0.4 (absolute value) are shown. 

Name RC1 Group  Name RC2 Group  Name RC3 Group 
Cadmium and its 
compounds 

0.96 Metals  
Anthracene 0.89 PAH 

 
Dichlobenil 0.74 PPP 

Demeton-S-methyl 0.96 PPP  
p,p'-DDE 0.89 

PPP  
Pentachlorobenzene 0.69 

PPP, 
industrial 

Carbon tetrachloride 0.95 industrial  Aldrin 0.89 PPP  Parathion-methyl 0.56 PPP 
Pendimethalin 0.95 PPP  Tetrachloroethylene 0.88 industrial  Dichlorvos 0.5 PPP 
Chloroalkanes C10-13 0.94 industrial  Isodrin 0.86 PPP  Dicofol 0.49 PPP 
Atrazine 0.94 PPP  Beta-Endosulfan 0.86 PPP  Bromacil 0.46 PPP 
Linuron 0.93 PPP  Alpha-Endosulfan 0.86 PPP  o,p'-DDD 0.45 PPP 
Nickel and its 
compounds 

0.92 Metals  

Metamitron 0.81 
PPP 

 2,4-
dichlorophenoxyacetic 
acid, 2-4 D 0.44 PPP 

Fenitrothion 0.88 PPP  Heptachlor epoxide 0.81 PPP  Chlorsulfuron 0.43 PPP 
Naphthalene 0.86 PAH  Di(2-ethylhexyl) 

phthalate (DEHP) 0.81 
industrial  Gamma-HCH 

(Lindane) 0.42 PPP 
Trichloroethylene 0.84 industrial  Hexazinone 0.8 PPP  Beta-HCH 0.42 PPP 
Terbuthylazine 0.83 PPP  Chlorpyrifos-methyl 0.8 PPP  Metribuzin 0.42 PPP 
MCPA 0.83 PPP  2,4-dichloro-

phenoxyacetic acid 0.79 
PPP   

Trifluralin 0.82 PPP  Simazine 0.76 PPP   
DDT, o,p' 0.81 PPP  Gamma-HCH (Lindane) 0.75 PPP   
p,p'-DDD 0.79 PPP  Alpha-HCH 0.75 PPP   
Metazachlor 0.79 PPP  Pentachlorophenol 0.74 PPP   
Desethylatrazine 0.76 PPP  Dichlorvos 0.74 PPP   
Hexachlorobenzene 0.75 PPP, 

industrial 
 

1,2-dichloroethane 0.74 industrial 
  

Fenpropimorph 0.75 PPP  
Trichloromethane 0.66 

PPP, 
industrial 

  

Benzene 0.74 PAH  Lead and its 
compounds 0.63 Metals 

  

Diuron 0.73 PPP  Beta-HCH 0.63 PPP   
Metolachlor 0.73 PPP  Fluoranthene 0.62 PAH   
Fluoranthene 0.71 PAH  Endrin 0.62 PPP   
Lead and its compounds 0.69 Metals  Ethofumesate 0.56 PPP   
Dicofol 0.66 PPP  Metribuzin 0.55 PPP   
Ethofumesate 0.64 PPP  Heptachlor 0.54 PPP   
Desisopropylatrazine 0.57 PPP  

Hexachlorobenzene 0.51 
PPP, 

industrial 
  

o,p'-DDD 0.45 PPP  Lenacil 0.51 PPP   
Bromacil 0.43 PPP  Isoproturon 0.51 PPP   
Pentachlorophenol 0.42 PPP  Delta-HCH 0.48 PPP   
Chlorpyrifos 0.39 PPP  Bromacil 0.47 PPP   
Chlorsulfuron -0.38 PPP  Propiconazole 0.46 PPP   
Simazine -0.51 PPP  Desisopropylatrazine 0.45 PPP   
Metribuzin -0.62 PPP  Dieldrin 0.45 PPP   
Heptachlor -0.73 PPP  Dicofol 0.4 PPP   
Dichloromethane -0.74 industrial  

Pentachlorobenzene 0.4 
PPP, 

industrial 
  

    Desethylterbuthyl-
azine 0.4 PPP   

    Chlorpyrifos -0.48 PPP   
    Terbutryn -0.51 PPP   
    DDT, p,p' -0.62 PPP   
    Alachlor -0.64 PPP   
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2.1.3. INTERPRETATION 

To better understand why certain chemicals co-occur, spatial factors of the sites were taken into 
account. For each of the sites, information is available on e.g. the region they belong to or the 
river basin they belong to. Spatial factors are linked to other factors that might explain the 
observed mixtures e.g. certain regions in France are historically heavy industrialized, subject to 
intense agriculture or heavily populated, which will determine the chemical mixtures found. To 
visually explore this, the sites on the PCA biplot are color clustered: sites belonging to e.g. one 
region are assigned the same color. For the interpretation of the Waterbase PCA, the influence 
of the Région and the river basin were further explored (Figure 16). When interpreting the 
clustering, it can be worthwhile to take into account the number of sites per spatial factor. An 
overview of the number of sites per “Région” and river basins can be found in Table 8. 
 

 
Figure 16: The Régions (left) and river basins (right) in France. 
Table 8: Number of sites per Région and river basin in the processed Waterbase dataset. 

REGION SITES  RIVER BASIN SITES 
AUVERGNE-RHONE-ALPES 4,821  ESCAUT/SOMME/MER 

NORD 
306 

BOURGOGNE-FRANCHE-
COMTE 

3,328  LOIRE & BRITTANY 9,152 

BRETAGNE 1,994  MEUSE 533 
CENTRE-VAL-DE-LOIRE 2,233  SAMBRE 61 
CORSE 385  SEINE & NORMANDY 6,256 
GRAND-EST 3,260  RHONE & MEDITERANEAN 9,274 
HAUTS-DE-FRANCE 933  RHIN 1,699 
ILE-DE-FRANCE 991  CORSICA 385 
NORMANDIE 2,251    
NOUVELLE-AQUITAINE 1,445    
OCCITANIE 1,698    
PAYS-DE-LA-LOIRE 1,656    
PROVENCE-ALPES-COTE-
D'AZUR 

2,076    
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Looking at the Régions (similar to provinces in France), clear clusters can be identified (Figure 
17). These Régions have a clearly distinct history and land use, which can help explain the 
observed clusters (Figure 16).  
The Régions of Ile de France, Hauts-de-France, Normandie, Grand-Est and Centre Val de Loire 
are all similarly oriented. The area around Paris and the north-east of France has been heavily 
industrialized for many years (Figure 19). Similarly, agriculture is mainly focused on (the 
intensive culture) of field crops and to a lesser extent cattle. Mixtures found for these locations 
have similar profiles, defined by a mixture of agrochemicals, metals and industry metals or by 
distinct mixtures of agrochemicals. 
The Régions of Nouvelle-Aquitaine, Occitanie, Provence-Alpes and Pays de la Loire form 
another group clearly distinct from the former. Nouvelle-Aquitaine, Occitanie and Provence 
Alpes have more modern industry and vineyards are a distinct agricultural land use which is 
nearly absent in the northern parts of France. Pays de le Loire has less vineyards, but this seems 
to be reflected in the biplot as well as this Région is more distinct from the other three Régions 
from the same cluster.  
Finally, Auvergne-Rhône-Alpes, Bretagne and Bourgogne-Franche-Comté are more in between 
these two groups. Auvergne-Rhône-Alpes is a distinct group. Around Lyon, heavy industry is 
present and intensive field cropping is the main agricultural activity. But further away from 
Lyon, land use becomes more mixed and less intensive. Bretagne is a distinct group because 
the industry is identified as modern and the agricultural land use is focused on cattle farming. 
Finally, Bourgogne-Franche-Comté also has both areas with intensive and extensive land use, 
explaining its intermediate position. 
 
The biplot with clustering for the river basins shows similar patterns (Figure 18), which overlap 
partly with the clustering based on the Régions.  
The river basins of the Scheldt, Meuse and Rhin as well as sites near the North Sea cluster 
together. Here as well, this is explained by the heavy (older) industrial activity in the region and 
the intensive field cropping practices around these rivers. Sites located in the area around the 
Seine and in Normandy overlap to a large extent with this cluster, but also contain distinct sites. 
This was attributed to the sites in Normandy being more focused on livestock production and 
less heavily industrialized than sites close to the Rhine and Meuse. Similarly, the Rhône only 
shows a partial overlap, associated with the industry around major city centers (e.g. Lyon) and 
the mixed industry and agriculture in the rest of the region (mix of field crops, livestock and 
vineyards). Sites in the Loire river basin and in Brittany are very diverse in the type and intensity 
of the land use, resulting in a wide range of chemical compositions, as shown by their sites 
being widely spread in the biplot.   
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Figure 17: Biplot of the Waterbase PCA, with clustering for the Région the sites are in. Ellipses 
indicate where 95% of the sites belonging to a specific Région are situated. 

 
Figure 18: Biplot of the Waterbase PCA, with clustering for the river basin the sites are in. Ellipses 
indicate where 95% of the sites belonging to a specific river basin are situated. 
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Figure 19: Land use in France: Industry (top) and agriculture (bottom).  
Sources: https://www.hgsempai.fr/carto/?p=115; Latruffe et al. 2008. 
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2.2. RHINE 

2.2.1. DATA PROCESSING 

The original database is available as a long list in the format of one individual measurement per 
row. A first step was to aggregate this to ‘samples’ i.e. chemicals that co-occur as part of the 
same mixture.  

• Chemicals that were measured on the same location and in the same month and year 
were considered part of the same sample.  

• If multiple measurements of the same chemical were available per month and site, the 
average of the values was taken.  

• Measurements below the detection limit were set to the reported detection limit (this has 
no impact on the PCA).  

This resulted in a dataset of 4,182 rows (samples) and 288 columns (chemicals). The dataset 
contains measurements from 1978 to 2019, but the most measurements are available from 1995 
onwards. Data from 16 monitoring locations are present. This dataset consisted of incomplete 
samples i.e. not all 288 chemicals were present in the samples. For the PCA analysis, a dataset 
with complete samples is required. Further data processing was done and a final dataset for 
analysis was prepared with 390 samples and 71 chemicals for 8 monitoring locations. The 
chemicals in this dataset are mainly priority pollutants. The monitoring locations and chemicals 
that were not retrieved, did not contain sufficient samples. Before PCA analysis, the chemical 
concentrations were log-transformed and standardized. 
 
 
2.2.2. OBSERVED MIXTURES AND INTERPRETATION 

The PCA analysis explained a large part of the variance in the dataset: 71% of the variance was 
explained by the first three components. The biplot indicated a satisfactory PCA analysis, with 
clear clusters of sites (points in the biplot) and the chemicals showing clear correlations with 
the principal components (Figure 20). 
 
The Varimax loadings give a quantitative indication for which chemicals are most correlated 
with the principal components, and indirectly, with each other (Table 17). A varimax threshold 
of 0.6 was selected to identify the most relevant chemicals. The first component is a mix of 
chemicals belonging to the different chemical groups in the dataset (agrochemicals, industrial 
chemicals, metals and PAHs). The positive varimax scores indicate a mixtures of a broad group 
of mainly industrial chemicals. On the other side of the first component, mixtures or mainly 
herbicides can be identified. These two groups of mixtures do typically not co-occur. The 
second principal component are mainly mixtures of plant protection products. The third 
principal component contains mixtures with agrochemicals and PAH. 
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Table 9: Varimax loading scores for the three principal components of the Rhine dataset. Only 
the varimax scores >0.6 (absolute value) are shown 

PC1 Substances   PC2 Substances 
0,96 azinphos-ethyl in µg/l   0,94 mecoprop in µg/l 
0,96 malathion in µg/l   0,94 dichlorprop in µg/l 
0,95 chlorfenvinphos in µg/l   0,93 MCPA in µg/l 
0,95 trifluralin in µg/l   0,93 2,4-dichlorophenoxy acetic acid 
0,95 diazinon in µg/l   -0,79 1,4-dichlorobenzene in µg/l 
0,95 dimethoate in µg/l   -0,79 fenthion in µg/l 
0,94 alachlor in µg/l   -0,72 1,2-dichlorobenzene in µg/l 
0,94 fenitrothion in µg/l       
0,94 ethyl-parathion in µg/l       
0,94 methyl-parathion in µg/l       
0,94 simazine in µg/l       
0,94 1,3,5-trichlorobenzene in µg/l       

0,9 terbuthylazine µg/l       
0,86 atrazine-desethyl in µg/l       
0,84 nickel (Ni) total in µg/l       
0,82 copper (Cu) total in µg/l   PC3 Substances 
0,82 zinc (Zn) total in µg/l   0,69 benzo(ghi)perylene in µg/l 
0,82 calcium (Ca) in mg/l   0,66 chlorotoluron in µg/l 
0,82 nickel (Ni) dissolved in µg/l   0,66 indeno(1,2,3-cd)pyrene in µg/l 

0,8 sulfate (SO4) in mg/l   0,66 benzo(k)fluoranthene in µg/l 
0,8 naphthalene in µg/l   0,63 isoproturon in µg/l 

0,78 sodium (Na) in mg/l       
0,78 magnesium (Mg) in mg/l       
0,78 dissolved organic carbon (DOC)        
0,77 lead (Pb) total in µg/l       
0,76 chromium (Cr) total in µg/l       
0,76 fluoranthene in µg/l       
0,75 total organic carbon (TOC) in mg/l       
0,75 copper (Cu) dissolved in µg/l       
0,73 cadmium (Cd) total in µg/l       
0,71 orthophosphate (o-PO4)       
0,68 atrazine in µg/l       
0,66 nitrate-nitrogen (NO3-N) in mg/l       
0,63 cadmium dissolved in µg/l       

0,6 1,2,4-trichlorobenzene in µg/l       
0,6 1,2,3-trichlorobenzene in µg/l       

-0,59 diuron in µg/l       
-0,59 bentazone in µg/l       
-0,65 monolinuron in µg/l       
-0,65 methabenzthiazuron in µg/l       
-0,65 linuron in µg/l       
-0,66 benzene in µg/l       
-0,75 lead (Pb) dissolved in µg/l       
-0,84 trichlorethene in µg/l       
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Figure 20: Biplot for the Rhine PCA (with monitoring location clusters) 

The spatial location of the 8 retained monitoring locations drive the principal components. 
Because the samples per site (representing different measurements in time) are relatively 
closely clustered together, it can be observed that the temporal variability is smaller than the 
spatial variability.  
 

 
Figure 21: Biplot for the Rhine PCA (with monitoring location clusters) 

There is no pattern observed with respect to the monitoring months. This indicates that the 
seasonal patterns (e.g. use of plant protection products in certain periods of the year) do not 
significantly change the observed mixture composition in the Rhine data set. 
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2.3. FRANCE 

There are two datasets for France: one for the whole of France (referred to as France here) and 
one focused on the Adour-Garonne region (referenced as Adour-Garonne). Both were analysed 
with a PCA. 
 
2.3.1. DATA PROCESSING 

2.3.1.1. FRANCE 

The original database is available as a long list in the long format i.e. per row individual 
measurements of chemicals. A first step was to aggregate this to ‘samples’ i.e. chemicals that 
were considered together as part of the same mixture.  

• Chemicals that were measured on the same location and in the same month and year 
were considered part of the same sample.  

• If multiple measurements of the same chemical were available per sample, the 
maximum of the values was taken.  

• Measurements below the quantification limit were set to the reported quantification 
limit.  

The dataset of France contains 311811 rows (samples) and 1,883 columns (chemicals 
measured). This dataset consisted of incomplete samples i.e. not all 1,883 chemicals were 
present in the samples. For the PCA analysis, a dataset with complete samples is required. 
Further data processing was done and a final dataset for analysis was prepared with 30,307 
samples and 436 chemicals. Before PCA, the chemical concentrations were log-transformed 
and standardized. 
 
2.3.1.2. ADOUR-GARONNE 

The dataset consists of 87721 observations, which include 2408 sampling sites throughout 5 
years from 2015-2019, and 409 variables.  
As PCA requires a dataset with complete samples, 
pre-processing was applied to remove “empty 
cells”, 3563 observations (with 290 sampling sites, 
4 years from 2016-2019) and 77 chemicals retains 
in the final dataset – which is used for PCA 
analysis. The overall information of the final 
dataset can be illustrated as follow. 
After pre-processing, the retained dataset mainly 
contains industrial substances (47%), following 
with pharmaceutical (21%), mixed-uses (15%) and 
argochemical substances (12%). Only a small part 
of dataset covers polyaromatic hydrocarbons 
(5%). A pie chart with the distribution of 
chemicals in final dataset is presented in Figure 22 
 

 
Figure 22: Distribution of chemicals 
retained in complete dataset of Adour-
Garonne after pre-processing. 
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Spatial and temporal coverage of the retained dataset is illustrated in Figure 23. As can be seen 
from the figure, after pre-processing, only data from 2016 to 2019 is retained and data from 
2019 is dominant thorough four years. The dataset does not equally cover all studied zones. 
Dordogne seems to be the most popular studied subject through four years, following by 
Charante. However, in 2019, Garonne covers the most data points. Côtiers aquitains et 
charentais is the zone that contains the least data point in the whole dataset.  
 

 
Figure 23: Spatial and temporal coverage of Adour-Garonne dataset after pre-processing. 

 
2.3.2. OBSERVED MIXTURES 

2.3.2.1. FRANCE 

The PCA analysis explained a large part of the variance in the dataset: 78% of the variance was 
explained by the first three components. The biplot indicated a satisfactory PCA analysis, with 
clear clusters of sites and the chemicals showing clear correlations with the principal 
components (Figure 24). Because of the high number of chemicals in the dataset, the identified 
mixtures can be quite extensive. Therefore, only the 20 chemicals with the highest positive and 
negative Varimax scores per component are shown (Table 10).  
 
In general, agrochemicals dominate this PCA. The varimax scores suggests that the first 
component separates agricultural chemicals and household, industrial chemicals and 
insecticides. For example, positive scores are found for the pesticides flutriafol, carbaryl, 
chlorsulfuron and monolinuron. No typical use pattern for these pesticides could be identified, 
they include herbicides, insecticides and fungicides. On the other side, chemicals are used in a 
variety of fields: Trichloropropane-1,2,3 is an industrial chemical (solvent, paint removal), 
dichlofluanide is used in wood protection, musk xylene is used in perfumes, acaricides to kill 
mites (e.g. propargite, fenpropathrin) and other insecticides (esfenvalerate) are also present. 
The second component is dominated by (legacy) pesticides. Interestingly, no chemicals with 
significant negative scores were found for this axis, suggesting that (absence of) agricultural 
activity is the main driver for these mixtures. Solvents (bromoform, hexachlorobutadiene) are 
another group found positively correlated with this component. Many legacy (agro)chemicals 
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are found in this mixture e.g. DDT, hexachlorobenzene and hexachlorobutadiene, which are no 
longer used but persistent in the environment.  
The third component includes agrochemicals both on the positive and negative side. This 
suggests that the two groups of agrochemicals are not used together. 
 

 
Figure 24: Biplot for the PCA for the France dataset. 
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Table 10: Varimax loading scores for the three principal components of the France PCA. Only 
the top 20 positive and negative scores are shown. 

Chemical RC1 
 

Chemical RC2 
 

Chemical RC3 
Flutriafol 0.99 

 
DDT 24' 0.97 

 
Ethiophencarbe 0.97 

Pyrazophos 0.99 
 

DDT 44' 0.97 
 

Fluquinconazole 0.94 
Acetamiprid 0.99 

 
Heptachlo epoxyde exo cis 0.97 

 
Penconazole 0.92 

Amétryne 0.99 
 

Hexachlorobutadiène 0.97 
 

Desmediphame 0.92 
Carbaryl 0.99 

 
Chloroforme 0.97 

 
Tebufenpyrad 0.92 

Carbétamide 0.99 
 

Bromoforme 0.97 
 

Imazaquine 0.9 
Chlorsulfuron 0.99 

 
Dichloroéthène-1,2 trans 0.97 

 
Nuarimol 0.89 

Desmétryne 0.99 
 

Endosulfan B 0.97 
 

Bromadiolone 0.88 
Flazasulfuron 0.99 

 
Endosulfan A 0.97 

 
Aldicarbe 0.88 

Monolinuron 0.99 
 

Hexachlorobenzène 0.97 
 

Buprofézine 0.88 
Paclobutrazole 0.99 

 
Isodrine 0.97 

 
Hexachloroéthane 0.87 

Sulfosufuron 0.99 
 

Chloronitrobenzène-1,4 0.97 
 

Ethoprophos 0.87 
Mesosulfuron methyle 0.98 

 
p-octyl phénol 0.96 

 
Bendiocarbe 0.87 

Bromuconazole 0.98 
 

Dibutyltin+ 0.96 
 

Diéthofencarbe 0.86 
Picoxystrobine 0.98 

 
DDD 44' 0.96 

 
Bupirimate 0.86 

Cyanazine 0.98 
 

Trifluraline 0.96 
 

Flurochloridone 0.86 
Florasulam 0.98 

 
Aldrine 0.96 

 
Cloquintocet-mexyl 0.86 

Sébuthylazine 0.98 
 

Dieldrine 0.96 
 

Carfentrazone-ethyl 0.85 
Métoxuron 0.98 

 
Endrine 0.96 

 
Dichlorométhane 0.83 

Monuron 0.98 
 

DDD 24' 0.96 
 

Azaconazole 0.83 
Disulfoton -0.85 

    
Pyrimiphos-éthyl -0.49 

Benfluraline -0.86 
    

pentabromodiph éther 
85 

-0.51 

Bioresméthrine -0.86 
    

phosmet -0.53 
Chinométhionate -0.88 

    
Dinitrotoluène-2,4 -0.54 

Bifenthrine -0.88 
    

Demeton-S-Methyl-
Sulf. 

-0.54 

Cyfluthrine -0.9 
    

cis-1,3- 
dichloropropène 

-0.55 

Bromopropylate -0.91 
    

trans-1,3-
dichloropropène 

-0.55 

Tolylfluanide -0.91 
    

Chlorbufame -0.58 
Musc xylene -0.91 

    
Dibromoéthane-1,2 -0.61 

Tétradifon -0.92 
    

Triallate -0.67 
Fenpropathrine -0.93 

    
Prométone -0.68 

Acrinathrine -0.93 
    

Heptabromodiphényl 
éther 

-0.68 

Esfenvalerate -0.93 
    

Piperonyl butoxyde -0.7 
Vinclozoline -0.94 

    
Chlorure de vinyle -0.71 

Thiométon -0.96 
    

Flutolanil -0.74 
Tefluthrine -0.96 

    
1-(3,4-diClPhyl)-3-M-
urée 

-0.75 

Oxadiargyl -0.96 
    

Triadiméfone -0.79 
Captane -0.97 

    
Fenpropidine -0.8 

Propargite -0.98 
    

Méthyl tert-butyl Ether -0.82 
Dichlofluanide -0.99 

    
Prophame -0.91 

Trichloropropane-1,2,3 -0.99 
    

Bitertanol -0.93 
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2.3.2.2. ADOUR-GARONNE 

The first three principal components (PCs) represent 68.9% of the variance – which is a 
satisfactory result of a principal component analysis. The biplots of PC1-PC2 and PC1-PC3 can 
be seen in Figure 25. Clusters of sampling points can be observed from the biplots. The 
observed separation is relative to sub basins, as being coloured in the figure. There is no 
trend/separation can be observed with respect to the temporal factors (year/month). The 
influence of spatial factor therefore can be seen as the most dominant role in the pattern 
observed from PCA results.  
 

 
(a) 

 
(b) 

Figure 25: Biplots of PCA results on Adour-Garonne dataset with colour code clustering for sub 
basins. Lines indicate in which area 95% of the sites fall. (a) PC1 - PC2; (b) PC1 - PC3 

 
Varimax loadings give a quantitative indication for which chemicals are most correlated with 
the principal components. The Varimax loadings resulted from PCA on Adour-Garonne dataset 
is presented in Table 11. 
 
 

X4.trt.O

D.
2.

th
y.

H....
....

....
15

3

H....
....

....
15

4

P....
....

....
9

t...
....P....

....
....

1

Slfnt.d.

Dc...1.2

Chlrr.d.

T...1.1.

Ep
ch

lrh
y

Bsp
hn

l.A

T..
.BDE2Irg

ar
ol

M
..t

...
2

Pe
rc

hl
rt

Slfmthxz

Acd.fnfb

AcdprflrnØ

AcdprflrcØPrflrhx.

Crbmzpn.

Dn...2.4

Ph
tl..

..

Hxchlrbn..

Pntchlrb
Nphtl..n

An
th

rc
..

Bn
z..

p..

Fl
rn

th
..

Benz..ne

Chlorfrm

Hx
ch

lrb
t..

T..trc..
Trch....

Pntchl..

T..t....

X4.nn...

Trbty...

Hxch
lrc.

T...1.2.4

Pr
py

lpr
b

Carbmzpn

T..
...1

.

Db...1.2

M..t...E

Brmr....

Trchlr..

S.
.D

DD
..

Sm
m

.d
s.

H

Acd
.m

n..

Bt
yl.

bn
.

X1.Hyd.I
Acd.nflm

Crbxybpr

D.
.th

yl.

Dn...2.6

NrthndrnTrclcrbn

Estrone

Ntrbnz..

Chlr...4

KetoprfnOxazepam

Paractml

T...1.2.3
T...1.3.

Cyclphsp

M..t.
..4

Diclofnc

T...
F.N

.

Cynrs.l
b

Ibuprofn

n.
Bt

yl.
P

Et
hy

lpr
b

Dchlrm
..

Triclosn

C......2

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25
PC1 (29.5% explained var.)

PC
2 

(2
0.

7%
 e

xp
la

in
ed

 v
ar

.)

Adour

Charante

Côtiers aquitains et charentais

Dordogne

Garonne

Lot

Tarn−Averyron

X4.trt.O

D.2.thy.

H............153
H............154
P............9

t.......P............1

Slfnt.d.
Dc...1.2

Chlrr.d.

T...1.1.

Ep
ch

lrh
y

Bsphnl.A

T...BDE2

Irgarol

M..t.
..2

Perchlrt

Slfmthxz

Acd.fnfbAcdprflrnØ

AcdprflrcØ
Prflrhx.

Crbmzpn.

Dn...2.4

Phtl....

Hxchlrbn.. Pn
tc

hl
rb

Nphtl..n

Anthrc..

Bn
z..

p..

Fl
rn

th
..

Benz..ne

Chlorfrm

Hxchlrbt..

T..trc..
Trch....

Pn
tc

hl
..

T..t....

X4.nn...

Tr
bt

y.
..

Hx
ch

lrc
.

T...1.2.4

Pr
py

lp
rb

Carbmzpn

T.....1.
Db...1.2

M..t...E
Brmr....

Trchlr..

S.
.D

DD
..

Sm
m

.d
s.

H

Acd.m
n..

Btyl.bn.

X1.Hyd.I

Acd.nflm

Crbxybpr
D..thyl.

Dn...2.6

Nrthndrn

Trclcrbn

Estrone

Ntrbnz..

Ch
lr.

..4

KetoprfnOxazepam

Paractml

T...1.2.3
T...1.3.

Cyclphsp

M..t.
..4

Diclo
fnc

T..
.F.

N.

Cynrs.lb
Ibuprofn

n.Btyl.P

Et
hy

lp
rb

Dchlrm
..

Triclosn

C......2

−0.5

0.0

0.5

−0.50 −0.25 0.00 0.25
PC1 (29.5% explained var.)

PC
3 

(1
8.

7%
 e

xp
la

in
ed

 v
ar

.)

Adour

Charante

Côtiers aquitains et charentais

Dordogne

Garonne

Lot

Tarn−Averyron



 

 49 

Table 11: Varimax loading scores for the first three principal components of PCA resulted on 
Adour-Garonne dataset. Only the varimax scores > 0.4 (absolute value) are presented. 

Substances PC1 Group  Substances PC2 Type  Substances PC3 Type 

Carboxyibuprofen 0,95 pharma  Tetrabromodiphenyl ether 
(BDE-47) 0,94 PBDEs  Hexachlorobenzene 0,94 PPP, industrial 

Ketoprofene 0,95 pharma  Pentabromodiphenyl 
ether (BDE 99) 0,94 PBDEs  2,4-Dinitrotoluene 0,87 / 

1-Hydroxy Ibuprofen 0,94 pharma  Pentabromodiphenyl 
ether (BDE 100) 0,94 PBDEs  1,1,2,2-

Tetrachloroethane 0,86 / 

Carbamazepine epoxide 0,93 pharma  Tribromodiphenyl ether 
(BDE 28) 0,94 PBDEs  Trichlorobenzenes (all 

isomers) 0,83 PPP,industrial 

Estrone (E1) 0,93 pharma  Hexabromodiphenyl ether 
(BDE-153) 0,94 PBDEs  Dichloromethane 0,83 industrial 

Triclocarban 0,92 biocide,phar
ma  Hexabromodiphenyl ether 

(BDE-154) 0,94 PBDEs  Pentachlorobenzene 0,81 PPP,industrial 

Norethisterone 0,91 pharma  Irgarol/Cybutryne 0,8 biocide  Total of DDDpp, DDEpp, 
DDTop, DDTpp 0,8 PPP 

Ibuprofen 0,91 pharma  Dimethyl phthalate 0,64 industrial  1,2,4-Trichlorobenzene 0,77 PPP, industrial 

Fenofibric acid 0,86 pharma  Di-ethyl phthalate 0,6 /  1,2,3-Trichlorobenzene 0,77 PPP, industrial 

Niflumic acid 0,85 pharma  Butyl benzyl phthalate 
(BBP) 0,59 industrial  1,3,5-Trichlorobenzene 0,77 / 

Oxazepam 0,84 pharma  Perchlorate 0,59 /  Total of 
hexachlorocyclohexanes 0,74 / 

(Perfluorooctanoic acid) 
PFOA 0,77 industrial  Dibutylphthalate 0,58 /  Delta-HCH (delta-

hexachlorocyclohexane) 0,74 PPP 

Perfluorohexanesulfonic 
acid 0,77 industrial  Chloroacetic acid 0,53 PPP, pharma  2,6-Dinitrotoluene 0,72 industrial 

Carbamazepin 0,74 pharma  Di(2-ethylhexyl)phthalate 
(DEHP) 0,51 industrial  Tributyltin cation 0,68 / 

Paracetamol 0,74 pharma  Triclosan 0,49 biocide,phar
ma  Chloroethene 

(vinylchloride) 0,66 / 

Perfluorooctane sulfonate 0,7 /  Total of 
hexachlorocyclohexanes 0,44 PPP  4-Chlorophenol 0,65 PPP, industrial 

Perfluorohexanoic acid 0,7 industrial  Delta-HCH (delta-
hexachlorocyclohexane) 0,43 PPP  Benzene 0,63 PAH 

Sulfamethoxazol 0,69 pharma  Octylphenol (4-(1,1',3,3'-
tetramethylbutyl)-phenol) 0,42 PPP,industria

l  Methyl tertbutyl ether 0,63 / 

Pentachlorophenol 0,66 PPP  Hexachlorobutadiene 0,41 PPP, 
industrial  Bromomethane 0,61 / 

4-Nonylphenol, branched 0,63 industrial      Pentachlorophenol 0,53 PPP 

Tributyltin cation 0,61 /      Benzo(a)pyrene 0,49 PAH 

Diclofenac 0,61 pharma      1,2-dichloroethane 0,46 industrial 

Cyclophosphamide 0,6 pharma      4-methyl-phenol 0,42 / 

4-Chlorophenol 0,49 PPP, 
industrial      2-methyl-phenol 0,42 / 

Free cyanide 0,46 /      

Octylphenol (4-
(1,1',3,3'-
tetramethylbutyl)-
phenol) 

-0,62 PPP,industrial 

1,2,4-Trichlorobenzene -0,4 PPP, 
industrial      Triclosan -0,7 biocide,pharma 

1,2,3-Trichlorobenzene -0,4 PPP, 
industrial      Chloroacetic acid -0,71 PPP, pharma 

1,3,5-Trichlorobenzene -0,4 /         

Methyl tertbutyl ether -0,43 /         

2,6-Dinitrotoluene -0,47 industrial         

Tetrachloroethylene -0,53 industrial         

1,2-dichloroethane -0,54 industrial         

Trichloroethylene -0,55 industrial         

Bromomethane -0,6 /         

Carbon tetrachloride  -0,61 industrial         

Nitrobenzene -0,84 industrial         

Trichloromethane -0,89 PPP,industria
l         
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The first component is dominated by pharmaceutical substances and a few industrial/PPP 
substances. Frequently used medicines as pain killers, hormonal pills, anti-inflammatory drugs 
are observed the most in the first PC. The explanation for distribution/co-occurance of these 
substances is discussed in 2.3.3. The negative varimax scores indicate a mix of chemicals 
mainly used in agricultural and industrial sectors. The analysis indicates that chemicals on 
positive side of PC1 do not co-occur with ones on negative side. The second and third PCs are 
mixtures of industrial/agricultural substances. 
 
 
2.3.3. INTERPRETATION 

2.3.3.1. FRANCE 

To better understand why certain chemicals co-occur, spatial factors of the sites were taken into 
account. For each of the sites, information is available on the region they belong to (Figure 26). 
This analysis is similar to the analysis with the Waterbase dataset, which only contained sites 
from France in the final dataset. Therefore, we compared the results per Région with the 
previous analysis. Looking at the number of sites per Région (Table 12), Bretagne, Pays de la 
Loire and the sites unassigned to a Région were underrepresented (<50 sites) which prevented 
a good interpretation of these sites.  
 
Table 12: Number of sites per Région and river basin in the processed France dataset. 

REGION SITES 
AUVERGNE-RHONE-ALPES 4,902 
BOURGOGNE-FRANCHE-COMTE 6,050 
BRETAGNE 54 
CENTRE-VAL-DE-LOIRE 662 
CORSE 471 
GRAND-EST 4,350 
HAUTS-DE-FRANCE 2,305 
ILE-DE-FRANCE 2,660 
NORMANDIE 3,696 
OCCITANIE 2,276 
PAYS-DE-LA-LOIRE 6 
PROVENCE-ALPES-COTE-D'AZUR 2,831 
UNASSIGNED 44 

 
Compared to the Waterbase dataset, the different Régions overlapped more. Normandie and to 
a lesser extent Hauts-De-France clusters were situated more to the left compared to the other 
Régions. These are regions with old industry. Other heavily industrialized Régions which had 
similar chemical concentrations in the Waterbase PCA (Centre-Val-De-Loire, Grand-Est, Ile-
de-France), are no longer found together with these two Régions. Possibly, the higher relative 
weight of agrochemicals in the France dataset caused this shift. The other Régions could not be 
clearly distinguished from one another. Looking at the biplot with the first and third principal 
component, the distinction between Occitanie, Provence-Alpes-Côte-d’Azur and Bourgogne on 
one side and the other Régions (e.g. Grand-Est) becomes apparent again, likely associated with 
their typical agricultural and industrial land use.  
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Figure 26: Biplot of the France PCA, with clustering per Région. The biplots for PC1 and PC2 
(top) and PC1 and PC3 (bottom) are shown. 
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2.3.3.2. ADOUR-GARONNE 

From PCA resulted on Adour-Garonne dataset, five mixtures of chemicals were observed. 
Except the first mixture (positive side of PC1), other four mixtures cover a broad group of 
chemicals. There is no immediate explanation for their co-occurrence yet and more 
investigation is required to go further to interpret this result. On the other hand, the mixture 
dominating positive side of PC1 mainly contains pharmaceutical substances. This mixture is 
helpful for us to understand factors having impacts to its occurrence. 
 
Score plot of PC1-PC2 is clustered into three groups as in Figure 27. Orange cluster consists of 
sampling points which have highest presence of pharmaceutical substances in samples. Blue 
cluster consists of sampling points which have lowest presence of pharmaceutical substances 
in the samples. Grey cluster is in between orange and blue clusters. 
 

 
Figure 27: Score plot PC1-PC2 of PCA resulted on Adour-Garonne dataset. Three clusters are 
defined based on PC1. 

 
The orange and blue clusters are presented in the Adour-Garonne map to understand further 
their pattern, as illustrated in Figure 28. Location of pharmaceutical factories is also marked in 
the map.  
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Figure 28: Spatial distribution of orange and blue cluster on the Adour-Garonne map. Red check-
in points represent location of pharmaceutical factories. 

 
 
As can be seen from the figure, 
sampling points with high presence 
of pharmaceutical substances are 
distributed mainly in Garonne and 
Tarn during the whole investigated 
time period (2016-2019). Whereas 
the blue sampling points are mainly 
present in Adour and Lot from 2016 
to 2019. Dordogne and Charante 
are also a part of these two clusters, 
however, pattern is only observed 
for 2019. 
 

 
Figure 29: Population density of Adour-Garonne3 

 
No direct link between production plants and the exposure pattern can be observed. The 
exposure of pharmaceutical substances in this region seems not to have correlation with 
production sites. Investigation is therefore focused on different factors: use-pattern and spatial 
factor. Population density of the region is shown in Figure 29. Garonne and Tarn are both highly 
dense in population with Toulouse is a metropolitan, whereas Adour and Lot are less dense. 
The exposure of pharmaceutical substances seems to correlate with the population density. This 
can be explained that these drugs are commonly used and their presence in surface water might 
be due to the residue from human waste. A study from Destrieux et al. (2017) on exposure of 
drug residues in Toulouse shows that many of pharmaceutical substances can still be quantified 
at the downstream of wastewater treatment plants (WWTP). However, the concentration of 
these chemicals is not significantly greater than upstream of WWTP. Their conclusion is that 
WWTPs have negligible contribution to the presence of drugs in surface water and the upstream 
watershed is considered as the main source. 
 
Beside population, geographical factor also needs to be considered. Water from Lot subbasin is 
originated from Massif Central. It consists of two major catchments Truyère and Lot and a few 
small catchments along the main river. Water catchments in this area is considerably smaller 

 
3 INSEE – Recensement 1990 et recensements complémentaires. 

Dordogne 2019

Garonne+Tarn
2016-2019

Charante 2019

Adour + Lot: 2016-2019
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than others in Adour-Garonne. The water from Lot sub basin then joins in Garonne River. This 
area is known as a natural reserve zone, which is less exposed to artificial infrastructure. 
Water of Adour sub basin is originated from Pyrenée mountains. Its water catchments do not 
join in Garonne River but flow directly to Bay of Biscay (Atlantic Ocean). 
On the other hand, Garonne and Tarn sub basins consist of dense water catchments. All the 
catchments merge together along the downstream of Garonne River. The water in these two sub 
basins collect water from other zones. In another word, these regions can be considered as 
“downstream zones” – which are more diluted and polluted. This might be also a reason that 
the presence of drugs in these two sub basins is higher than other zones. 
 
In brief, use-pattern from population density and location of sampling points seem to play 
important role in the distribution of chemicals in Adour-Garonne, especially pharmaceutical 
substances. Production sites seem not to have correlation with the exposure of chemical in 
Adour-Garonne. 
 
 
2.4. SUMMARY OF OTHER DATABASES 

Only a brief summary of the following databases is reported here: The Netherlands (Dutch 
monitoring database, from Waterkwaliteitsportaal), Flanders (monitoring database by the 
Flemish Environmental Agency VMM) and the database from the third Joint Danube Sampling 
campaign (JDS3).  
 
 
2.4.1. THE NETHERLANDS (WATERKWALITEITSPORTAAL) 

The database contains 42,752 samples with 1,169 chemicals measured in total. Data processing 
for the PCA resulted in a dataset with 4,568 samples and 89 chemicals. The database is mainly 
focused on agrochemicals and hence the mixtures are less representative. 
 
The PCA was able to explain a large part of the variance: 80% of the variance was captured by 
the first three principal components. The first component is marked by a large mixture of 
agrochemicals on one side and a smaller mixture of 4 agrochemicals on the other side i.e. diuron 
(herbicide), bitertanol (fungicide), iprodione (fungicide) and fipronil (insecticide). The second 
component similarly distinguished a wide mixture of agrochemicals on one side and a small 
mixture of 4 agrochemicals on the other side i.e. pymetrozine (insecticide), thiofanaat-methyl 
(fungicide) and chlortoluron (herbicide). The third component shows one mixture of six 
chemicals to be relevant i.e. imidacloprid (insecticide), azoxystrobin (fungicide), metribuzin 
(herbicide), ethofumesaat (herbicide), clomazon (herbicide) and prosulfocarb (herbicide). An 
explanation why these agrochemicals co-occur is not immediately apparent. Possibly they are 
used in similar fields or have similar uses e.g. as garden chemicals versus large-scale 
agricultural use. The biplot clustering per water body suggests that there are differences 
between water bodies, but these were not further studied in detail. 
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Figure 30: Biplot for the PCA for the database of Waterkwaliteitsportaal (The Netherlands). 
Clustering is visualized per water body. 

 
2.4.2. FLANDERS (VMM) 

The dataset contains over 180 chemicals, covering agrochemicals, PAHs and metals. The PCA 
explained a reasonable amount of the variance i.e. 41% of the variance was explained by the 
first three components.  
The first component is largely determined by PAHs, suggesting this pollution is strongly linked 
to PAH emissions. The second component is correlated with a large number of (legacy) 
pesticides and a few metals (As and V). Agriculture seems to be the main land use responsible 
for this component. Lastly, the third component is associated with metals (Zn, Ni, Co, Cd) and 
detergents (e.g. nonyl phenol) and negatively associated with the herbicide desethylatrazine, 
suggesting industry and households are mainly responsible for this co-exposure.  
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Figure 31: Biplot for the PCA on the Flanders dataset. 

 
 
2.4.3. DANUBE (JDS3) 

The database from the Danube sampling campaign consists of a large number of chemicals 
measured (395 in total) but only a small number of sampling occasions (191). After data 
processing, a dataset with 44 samples for 248 chemicals was retained. The large number of 
chemicals for a small number of samples hindered the PCA, resulting in only a small amount 
of the variance (20% by the first two components) being explained by the PCA. Hence, the 
outcome of the PCA should be interpreted with care. 
The database contains many pharmaceuticals, and these are also most significant for the first 
principal component. A wide mixture of pharmaceuticals, e.g. clonazepam, verapamil, biocide, 
triazolam, chlorprothixene and diazepame, and the biocide cybutryne are contrasted with a 
mixture of 8 chemicals i.e. the pharmaceuticals nordiazepam, hydrocodone, (dihidro)codeine, 
Benzoylecgonine, the artificial sweetener sucralose and the metals copper and arsenic. The 
second component contrasts a mixture of pharmaceuticals and household chemicals (e.g. 
sucralose) with several water chemistry parameters (e.g. Na, Mg, DOC) and pharmaceutical 
(e.g. pipamperone, trimethoprim). 
The biplot with clustering per country suggests that the chemical cocktails can be different per 
country, but the number of samples is too low to draw any strong conclusions about the 
influence of e.g. land use or downstream vs upstream.  
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Figure 32: Biplot for the Danube dataset PCA, with clustering per country. 
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3. TECHNICAL ANNEX C: ENVIRONMENTAL MIXTURE RISK IN DATABASES 

For the cumulative risk assessment, the focus was made on those datasets supporting the 
identification of mixtures of concern for cumulative risk and/or ecological risk (risk identified) 
which would merit a review using the approach of the CEFIC MIAT decision tree for assessing 
effects from exposures to multiple substances. For the cumulative risk assessment, two 
databases were selected: i.e. the Eau-France – Adour/Garonne region and the Rhine database. 
The Eau-France Adour/Garonne region represents a dataset with samples covering a large area 
and substances from different sources which are covered by different legislations. The Rhine 
database represents a hot-spot example, with a limited number of sampling points (Table 13). 
 
Table 13: Summary of mixture exposure and analytes covered in the different databases used 
in the environmental mixture risk assessment. 

Database Number of samples covered Number of analytes 
Rhine 394 51 
Adour-Garonne 3563 77 

 
 
 
3.1. WATERBASE 

Rodea-Palomares et al. (in preparation) have done an extensive analysis of the Waterbase, 
calculating mixture risk using toxic units and applying the CEFIC MIAT decision tree. 
Therefore, we have chosen not to repeat this analysis but use their findings in our discussions. 
 
3.2. RHINE 

3.2.1. ASSESSMENT OF MIXTURE RISKS 

Figure 33 (upper panel) shows the cumulative risk in the Rhine dataset under the more realistic 
scenario (dealing with non-detects see section 1.2.2). The 10th to 90th percentile of the HI, 
ranged between 0.10 and 3.6, with a median HI of 1.1 (Table 14). The distribution of the 
mixture exposures over the different mixture groups is as follows: 19% are classified as Group 
I, 46% as Group II, 12% to Group IIIa and 22% to Group IIIb.  
 
Under the unrealistic worst-case scenario, the cumulative risks were substantially higher: the 
10th to 90th percentile of HI, ranged between 1.9 and 7.2, with a median HI of 4.9 (Table 15, 
Figure 33 lower panel). 73% of the mixture exposures belong to Group I, indicating the 
exceedance of the HC5 of at least one substance. 23% of the mixture exposures belong to Group 
IIIb, the more complex mixture category. The remaining mixture exposures are categorized in 
either Group II (2%) or Group IIIa (2%). 
 
Hence, unrealistic worst-case scenario would indicate a concern for environmental risks for 
98% of the mixture exposures (i.e. belonging to either Group I, Group IIIa or Group IIIb), while 
in the more realistic scenario this is the case for 50% of the mixture exposures there is a concern 
for environmental risks. However, it should be noted that a relatively simple refinement of the 
threshold level for one of the driving substances, reduces these risks significantly. 
 



 

 59 

 

 
 
Figure 33: Plot showing the Maximum Cumulative Ratio as a function of the Hazard Index for the 
Rhine dataset for the more realistic scenario (top, showing cumulative risks of the detects only) 
and the unrealistic worst-case scenario (bottom, showing cumulative risks of the detects at the 
measured concentration and of the non-detects at the detection limit). Different symbols 
indicate different sampling sites. 

 
Table 14: Overview of statistics for the Hazard Index for the mixture exposures.  

 More realistic 
scenario (<DL=0) 

Unrealistic worst-case 
scenario (<DL=DL) 

Minimum HI <0.01 0.68 
Maximum HI 19.8 23.5 
Median HI 1.1 4.9 
10th percentile 0.10 1.9 
90th percentile 3.6 7.2 
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Table 15: Overview of the percentage of mixture exposures belonging to the different mixture 
groups for the Rhine. 

 More realistic 
scenario (<DL=0) 

Unrealistic worst-case 
scenario (<DL=DL) 

Group I 19% 73% 
Group II 46% 2% 
Group IIIa 12% 2% 
Group IIIb 22% 23% 

 
Allocating chemicals to the different chemical legislations is difficult because some chemicals 
are subject to multiple chemical legislations (e.g. copper is a REACH substance, a biocidal 
active substance, a plant protection product, micronutrient in fertilizer, etc…), some chemicals 
are legacy chemicals (these are no longer used but there is still historical pollution, e.g. 
nonylphenol), some chemicals are both REACH chemicals as well as degradation or 
combustion product (e.g. PAHs). When chemicals are -grosso modo- split up over the different 
chemical legislations, REACH chemicals seem to drive the mixture risks in the Rhine data set. 
The main monitoring locations are located in or downstream the Ruhr area which is a heavenly 
industrialized region in Germany. The 10th to 90th percentile of HI for the REACH chemicals 
ranges between 0.05 and 3.5, with a median HI of 1.0. Compared to this all other substances 
(mainly PPP) only contribute minorly, with the 10th to 90th percentile of HI ranging between 
<0.01 and 0.41, and a median HI of 0.07. It should be noted that the contribution of the REACH 
chemicals is an overestimation of the actual REACH contribution. This is because this analysis 
did not differentiate mixture risks if a substance is listed under different chemical legislations, 
historical pollution and combustion products as described above. 
 
The driving chemicals under the more realistic scenario (with respect to detection limits) are 
listed in Table 16 and Table 17. Over the entire dataset, it is mainly the PAH 
benzo(ghi)perylene and zinc that drive the cumulative risks. In the Group I mixtures, an HQ>1 
is observed for 70 and 11 of the mixture exposures for benzo(ghi)perylene and zinc, 
respectively. For the Group IIIa mixtures, again the PAH benzo(ghi)perylene and zinc are the 
driving chemicals, with an HQ>0.5 observed in, respectively, 45 and 3 of the mixture 
exposures, while copper is popping up as the driving chemical in only one of Group IIIa 
mixtures. In the complex mixtures (Group IIIb), benzo(ghi)perylene and zinc are again the 
main contributors. However, also the pesticides isoproturon, diazinon and diuron, the metals 
copper, chromium and nickel and the PAH benzo(b)fluoroanthenene contribute to some extent 
to the overall mixture pressure (i.e. HQ>0.1 in at least one mixture exposure). The pesticides 
isoproturon, diazinon and diuron are currently not approved for use within the EU. Most of the 
driving chemicals are also listed as priority substances under the WFD (chromium, nickel, 
isoproturon, diuron, benzo(ghi)perylene), while others are also known as ‘legacy’ chemicals. 
Malaj et al. (2015) also noted that pesticides and PAHs are among the most contributing 
substances to chemical risks associated with organic chemicals in Europe. Diuron and diazinon 
have been identified as being among the most critical pesticides over 5 river catchments in 
Switzerland (Moshet et al. 2014), while isoproturon has been noted to be one of the substances 
driving mixture risks in European surface waters (Price et al. 2012). Within the SOLUTIONS 
project, diuron has been reported to drive predicted mixture risks for algae in the Rhine river, 
while the metals copper, nickel and zinc and the PAH benzo(ghi)perylene are driving mixture 
risks for invertebrates in the Danube river (Backhaus et al. 2018). Within the same project, 
diazinon has been identified for driving mixture risk for invertebrates and algae in wastewater 
treatment plant effluents in the German river Holtemme (Beckers et al. 2018). Metals have 
been observed to drive mixture pressure in several studies: e.g. Price et al. (2012) reported that 
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metals drive mixture risks in Group I and Group IIIb mixtures in European surface waters and 
wastewater treatment plant effluents in the UK. Metals have been reported to drive predicted 
mixture risks for fish and invertebrates in the Danube river. It should be noted that none of 
these studies and also the present study did not take bioavailability effects into account. It can 
be expected that incorporating bioavailability normalization into the HC5 derivation, via for 
instance the biotic ligand models, the predicted cumulative risks would decrease compared to 
the current analysis. However, even after bioavailability normalization substantial risks can be 
predicted in ‘hotspot’ water bodies in the with the HI/HQ approach, such as in the Dommel in 
the Netherlands (Nys et al. 2018). 
 
The driving chemicals under the unrealistic worst-case scenario (with respect to detection 
limits) are listed in Table 17. For ethyl-parathion and diazinon the HQ>1 in approximately 70% 
of the mixture exposures, while for benzo(ghi)perylene and zinc a HQ>1 was observed for 27% 
and 8% of the exposures. It should be noted that for parathion and diazinon measured 
concentrations were below the detection limit in 100% and 84% of the mixture exposures. 
 
Table 16: Substances driving the cumulative risks for each of the mixture groups in the Rhine 
dataset under the more realistic scenario. 

Mixture group Substance Maximum 
HQ 

Number of mixture 
exposures where 
HQ>1 HQ>0.5 HQ>0.1 

Group I (n=75) 
(only substances for which 
HQ in at least one mixture 
exposure is >1) 

benzo(ghi)perylene 9.06 70 71 71 
zinc (Zn) dissolved 1.61 11 24 59 
diazinon 1.08 1 1 2 
benzo(b)fluoranthene 3.10 1 3 60 
indeno(1,2,3-
cd)pyrene 

4.68 1 1 13 

benzo(k)fluoranthene 1.55 1 1 15 
Ethyl-parathion 1.45 1 1 1 

Group IIIa (n=49) 
(only substances for which 
HQ in at least one mixture 
exposure is >0.5) 

benzo(ghi)perylene 0.97 0 45 46 
zinc (Zn) dissolved 0.92 0 3 14 
Copper (Cu) dissolved 0.72 0 1 48 

Group IIIb (n=86) 
(only substances for which 
HQ in at least one mixture 
exposure is >0.1) 

benzo(ghi)perylene 0.99 0 62 83 
zinc (Zn) dissolved 0.89 0 10 72 
isoproturon 0.74 0 3 31 
copper (Cu) dissolved 0.59 0 2 86 
chromium (Cr) total 0.78 0 1 34 
diazinon 0.51 0 1 2 
nickel (Ni) dissolved 0.17 0 0 3 
benzo(b)fluoranthene 0.15 0 0 10 
diuron 0.12 0 0 1 

HQ=Hazard Quotient 
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Table 17: Driving chemicals under the more realistic scenario (i.e. detects at measured 
concentration + non-detects set at detection limit) and percentage of samples with a HQ>1, 
HQ>0.5 and concentration below DL. 

 
HQ>1 HQ>0.5 Concentration 

<DL 
ethyl-parathion 71% 71% 100% 
diazinon 67% 72% 84% 
benzo(ghi)perylene 27% 82% 34% 

HQ= hazard quotient, DL= detection limit 
 
 
3.2.2. RELEVANCY OF THE SELECTED ENVIRONMENTAL EFFECT LEVELS 

While performing cumulative risk assessment, it is crucial that the selected effect data are 
representative for the assessments performed. To allow a high-throughput analysis in the 
current assessment, HC5-values have been calculated based on parameters selected from the 
database published by Posthuma et al. (2019). The SSDs behind these HC5s are associated with 
different levels of uncertainty (and associated extrapolation factors). Table 18 shows the data-
quality label for the SSDs of the different substances driving the mixture pressure assessment 
as reported by Posthuma et al. (2019). For most of the substances, the chronic SSD is based on 
chronic NOEC/EC10 data covering at least 10 species. However, for benzo(ghi)perylene, 
chromium and nickel chronic SSDs have been extrapolated based on acute NOECs or EC50s 
(incorporating an extrapolation factor of 3 and 10, respectively). 
 
Due to the extent of the dataset (covering over 12000 substances), the toxicity data underlying 
the SSD-parameters may not have undergone the same data quality scrutiny assessment as in 
the substance-specific effect assessments for regulatory compliance assessment, such as in the 
REACH framework. For the driving chemicals (see Table 17), the relevancy of the selected 
HC5-values has been evaluated. Comparison has been done with freshwater PNECs published 
on the ECHA dissemination website. For PAH, for which no PNEC has been submitted under 
the REACH registration dossier, chronic PNECs were extracted from the PETROTOX-tool, 
which calculates calculated PNECs based on the Target Lipid Model (Redman et al. 2017). For 
the pesticides listed Table 16, comparison of the HC5 was made to the AA-EQS of the WFD 
(EC 2013/39/EU).  
 
Table 18: Overview of data quality of SSDs underlying the used HC5 for mixture pressure 
assessment for substances driving the HI/HQ approach. 

Data quality description in Posthuma et al. (2019) Substances 
Chronic NOEC not extrapolated - Officially enough 
species (>10) for ERA with SSDs 

Isoproturon, ethyl-parathion, zinc, 
diazinon, copper, 
benzo(b)fluoranthene, 
benzo(k)fluoranthene,  

Chronic NOEC extrapolated from Acute NOEC - Officially 
enough species (>10) for ERA with SSDs 

Benzo(ghi)perylene 

Chronic NOEC extrapolated from Acute EC50 - Officially 
enough species (>10) for ERA with SSDs 

Chromium, Nickel 
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The HC5 calculated from the database of Posthuma et al. (2019) is in reasonable agreement 
with the PNEC registered under REACH for metals (all within 3-fold difference) and with the 
WFD AA-EQS for the pesticides (all within 2-fold difference). However, for the PAHs the 
selected HC5-values systematically overestimates toxicity compared to the PNEC derived from 
the Target Lipid Model (TLM): up to 100-fold difference is observed. Especially for the PAH 
benzo(ghi)perylene, a large overestimation of the effect threshold was observed. Given that 
PAHs, and especially benzo(ghi)perylene were identified as one of the driving chemicals and 
the dependency of the method on the selected effect values, the HI/HQ approach is further 
refined using the TLM-derived PNECs for the PAHs. 
 

 
Figure 34: Comparison of calculated HC5 values based on SSD-parameters selected from 
Posthuma et al. (2019) and reference environmental threshold values for the driving chemicals 
in the Rhine dataset. For metals, HC5 values are compared to the chronic freshwater PNEC 
values from the ECHA dissemination website (blue squares, consulted May 2021). For the 
polycyclic aromatic hydrocarbons (PAH), HC5 values are compared to the chronic freshwater 
PNEC calculated with the Target Lipid Model (Redman et al. 2017, red triangles). For the 
pesticides, HC5 values are compared to the annual average-environmental quality standard from 
the Water Framework Directive (EC 2013/39/EU, open circles). The full line represents a perfect 
match between HC5 and PNEC or AA-EQS, the dashed lines represent a 10-fold difference. 

 
 
3.2.3. REFINING THE HI/HQ APPROACH WITH TLM DERIVED PNECS FOR PAH 

Figure 35 shows the cumulative risk in the Rhine dataset for the more realistic scenario with 
the refined effect thresholds for PAHs. This refinement resulted in a considerable decrease of 
the mixture pressure, e.g. median HI was decreased by 2.2-fold to 0.51 (Table 19). The 
distribution of the mixture exposures over the different mixture groups did also change 
accordingly with most mixture exposures belonging to Group II, and only a small fraction of 
the mixtures belonging to Group IIIa (2.5%) and Group IIIb (10.2). 
 
While PAHs where identified as important drivers in the previous assessment, this pictures 
changes totally when using the refined PNEC values for PAHs in the HI/HQ assessment. In all 
mixture groups of concern, metals (Zn, Cu and/or Cr) pop up as the driving chemicals with 
also some contributions of the EU-banned pesticides isoproturon, diazinon, diuron and ethyl-
parathion.  
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Figure 35: Maximum Cumulative Ratio as a function of the Hazard Index for the Rhine dataset 
for the more realistic scenario where the TLM-predicted PNEC are used for polycyclic aromatic 
hydrocarbons instead of the HC5 derived from Posthuma et al. (2019). Different symbols indicate 
different sampling sites. 

 
Table 19: Overview of statistics for the Hazard index for the mixture exposures for the different 
groups of substances for the more realistic scenario, after refinement of PAH thresholds. 

 All chemicals 
Minimum HI 0.01 
Maximum HI 3.46 
Median HI 0.51 
10th percentile 0.07 
90th percentile 1.23 

 
Table 20: Overview of the percentage of mixture exposures belonging to the different mixture 
groups for the more realistic scenario, after refinement of PAH thresholds. 

 All chemicals 
Group I 3.6% 
Group II 83.8% 
Group IIIa 2.5% 
Group IIIb 10.1% 
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Table 21: Substances driving the cumulative risks for each of the mixture groups in the Rhine 
dataset for the more realistic scenario, after refinement of PAH thresholds.  

Mixture group Substance Maximum 
HQ 

Number of mixture exposures 
where 

HQ>1 HQ>0.5 HQ>0.1 
Group I (n=14) 
(only substances 
for which HQ in at 
least one mixture 
exposure is >1) 

zinc (Zn) dissolved 1.61 11 11 12 
Ethyl-parathion 1.45 1 1 1 
indeno(1,2,3-
cd)pyrene 

1.22 1 1 1 

diazinon 1.08 1 1 1 
Group IIIa (n=10) 
(only substances 
for which HQ in at 
least one mixture 
exposure is >0.5) 

zinc (Zn) dissolved 0.92 0 8 9 
Copper (Cu) dissolved 0.91 0 1 9 
chromium (Cr) total 0.78 0 1 9 

Group IIIb (n=40) 
(only substances 
for which HQ in at 
least one mixture 
exposure is >0.1) 

zinc (Zn) dissolved 0.89 0 18 39 
isoproturon 0.74 0 4 26 
copper (Cu) dissolved 0.59 0 2 40 
chromium (Cr) total 0.44 0 0 33 
diazinon 0.51 0 1 1 
nickel (Ni) dissolved 0.12 0 0 1 
diuron 0.12 0 0 1 

 
 
3.2.4. PATTERNS OF CO-EXPOSURE IN MIXTURE RISKS 

Depending on the sampling site, different combinations of substances are identified to drive 
the mixture risks in the Rhine dataset. Upstream in Well am Rhein and Lauterbourg-Karlsrue, 
the pesticide diazinon and copper drive the mixture assessment. However, HQ of both 
substances are low or concentrations are below the detection limit from 2014 onwards. This 
indicates that chemical pollution might have improved over the previous decade. Contributions 
to the cumulative risk in selected samples were observed for the metals zinc, chromium and 
nickel and the pesticide isoproturon. 
In the sampling site Bimmen, it is mainly copper that drives the mixture risks, with in selected 
samples also substantial contributions of zinc, and chromium. Note that in Bimmen all except 
one sample are classified under Group II. Downstream the Rhine in the Lobith, Kampen and 
Maassluis sampling sites more complex mixture occur with copper, zinc, chromium and 
isoproturon as main drivers and PAH popping up in a limited number of samples. 
Overall, this is in agreement with the observation of the PCA performed on the exposure data, 
where the first PCA-axis was driven by Industrial chemicals/agrochemicals/metals/PAH, 
although the industrial chemicals seem to influence the cumulative risk less compared to the 
co-exposure pattern based on concentrations.  
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Table 22: Overview of substance co-exposurea driving the mixtire risk assessment in the 
different sampling sites of the Rhine dataset (ordered from upstream to downstream sampling 
site). 

 Group I Group II Group IIIa Group IIIb 
Weil am Rhein 
(0/17/0/0) 

- (Copper), 
(Diazinon), 
(Nickel) 

- - 

Lauterbourg-
Karlsruhe 
(1/110/1/1) 

Diazinon +Copper Diazinon, 
copper, 
(chromium) 

Zinc + 
chromium 

Diazinon, 
isoproturon 
Copper, 

Bimmen 
(0/8/1/0) 

- Copper, 
(Zinc), 
(Chromium) 

Zinc + 
copper, 
chromium 

 

Lobith 
(3/61/3/18) 

Zinc + Chromium, 
copper, isoproturon 
  
indeno(1,2,3-cd)pyrene 
+  
benzo(b)fluoranthene, 
benzo(a)pyrene, 
copper, 
benzo(k)fluoranthene, 
fluoranthene, zinc 

Copper, 
(Zinc), 
(Chromium), 
(Isoproturon) 

Zinc + 
copper, 
chromium, 
(isoproturon) 

Zinc, copper, 
chromium, 
isoproturon 

Kampen 
(4/67/1/10) 

Zinc + Chromium, 
copper, isoproturon 
Ethyl-parathion + 
copper, methyl 
parathion, isoproturon 

Copper, 
(zinc), 
(isoproturon), 

Zinc + 
copper, 
chromium 

Zinc, copper, 
chromium, 
isoproturon 

Maassluis 
(6/67/4/11) 

Zinc + copper, 
chromium, 
(isoproturon), (nickel, 
benzo(a)pyrene) 

Copper, 
(Zinc), 
(Chromium), 
(Isoproturon) 

Zinc + 
copper, 
chromium 
Copper + 
zinc, 
cadmium 
Chromium + 
Copper 

Zinc, copper, 
chromium, 
isoproturon, 
(nickel, 
diuron) 

a Only substances with a HQ>0.1 are considered in the table. Substances printed in bold 
dominate the cumulative risk, substances between brackets are only significantly contributing 
in part of the samples considered. 
 
 
3.2.5. MOA REFINEMENTS: MSPAFMOA-APPROACH 

The mixture assessment based on the HI/HQ approach that assumes that all substances have 
the same mode of action, is too simple and might be too conservative. Given the complexity of 
environmental databases and the possibility of the HI/HQ-aproach overestimating the mixture 
pressure when several Modes of Action (MoA) are considered, the mixture pressure analysis 
was further refined by taking into account the different modes of Action (MoA) in the database. 
This was done by calculating the mixture pressure using a hybrid method between CA and IA, 
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the msPAFMoA-approach. In practice, a Hazard Index was first calculated per mode of action 
(HIMoA) and then combined into a msPAFMoA to calculate a msPAF for complex mixtures with 
both shared and different modes of action. In total, 6 different Modes of Action (MoA) were 
identified among the substances measured in the Rhine dataset, with non-polar narcosis, Ache 
Inhibition_organophosphate and metallic iono/osmoregulatory impairmente being the most 
represented. Figure 36 shows the msPAF calculated per MoA. Only a limited number of MoA 
contribute to the overall msPAFMoA (i.e. for only 3 MoA calculated PAFs were higher than 
0.001). On average metallic iono/osmoregulatory impairment shows the highest PAF of all 
substances.  
Refining the mixture pressure assessment with the msPAFMoA-approach, resulted in a 
msPAFMoA>0.05 for 4 out of 10 Group IIIa mixtures and for 8 out of 40 Group IIIb mixtures. 
Under the msPAFMoA-approach the mixtures of concern are identified as those mixture 
exposures for which msPAFMoA³0.05, because for these mixture exposures it is predicted that 
at least 5% of the species is affected. The relatively simple msPAFMoA refinement reduces the 
exposures with high concern for mixture risks in the Rhine dataset to 10% of the total 
considered mixture exposures.  
 
 

 

 
Figure 36: (multi substance) Potentially Affected Fraction ((ms)PAF) for the most important 
Modes of Action for Group IIIa (upper panel) and Group IIIB mixtures (lower panel). 
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Figure 37: multi substance Potentially Affected Fraction based on refinement per Mode of Action 
(msPAFMoA) as a function of the Hazard Index (HI) for Group IIIa (open symbols) and Group IIIb 
(filled symbols) mixtures in the Rhine dataset. Under the msPAFMoA-approach the mixture 
exposures with msPAF>0.05 are predicted to be at risk. 
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3.3. FRANCE 

3.3.1. ASSESSMENT OF MIXTURE RISKS 

Figure 38 shows the cumulative risk of the actual measured substances in the Adour-Garonne 
dataset for the more realistic scenario (upper panel) and the unrealistic worst-case scenario 
(lower panel) (realistic with respect to treatment of non-detects, see section 1.2.2). In 1003 
samples, none of the 76 measured substance were present above the detection limits. Hence, 
these samples, were not taken into account for calculation of mixture pressure statistics in the 
more realistic scenario. The 10th to 90th percentile of the HI, under the more realistic scenario, 
ranged between <0.01 and 0.88, with a median HI of 0.05 (Table 23). This indicates that the 
actual risk associated with the measured substances is relatively small for this dataset. 
However, under the unrealistic worst-case scenario, the cumulative risks in the Adour-Garonne 
dataset are substantial: the 10th to 90th percentile of HI ranged between 13 and 130, with a 
median HI of 35 (Table 23).  
 

 
Figure 38: Plot showing the Maximum Cumulative Ratio as a function of the Hazard Index for the 
Adour-Garonne dataset for the more realistic scenario (upper panel; showing cumulative risks 
of the detects only) and the unrealistic worst-case scenario (lower panel; showing cumulative 
risks of the detects at the measured concentration and of the non-detects at the detection limit). 
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Under the more realistic scenario, the mixture exposures for which there is an actual mixture 
concern is relatively low, because 91% of the mixture exposures are classified as Group II 
mixtures. The distribution of the mixture exposures of concern over the different mixture 
groups is as follows: 8% are classified as Group I, 0.5% to Group IIIa and 0.1% to Group IIIb. 
Hence, only for a minority of the mixture exposures (<1%), there is a potential concern for co-
exposure. For the unrealistic worst-case scenario, all mixture exposures were classified under 
the mixture Group I, indicating the exceedance of the HC5 of at least one substance (Figure 
38).  
 
Table 23: Overview of statistics for the Hazard index for the mixture exposures for the Adour-
Garonne dataset. 

 More realistic 
scenario 
(<DL=0) 

Unrealistic worst-
case scenario 

(<DL=DL) 
Number of samples with detected substances 2,554 - 
Minimum HI <0.01 5.3 
Maximum HI 38.3 132 
Median HI 0.05 35.0 
10th percentile <0.01 13.0 
90th percentile 0.9 130 

 
Table 24: Overview of the percentage of mixture exposures belonging to the different mixture 
groups for the Adour-Garonne dataset. 

 More realistic 
scenario (<DL=0) 

Unrealistic worst-case 
scenario (<DL=DL) 

Group I 5.8% 100% 
Group II 94% 0% 
Group IIIa 0.5% 0% 
Group IIIb 0.1% 0% 

 
Over the entire dataset, it is mainly the hormone estrone that is popping up as an important 
driver of the mixture pressure in almost 70% of the mixture exposures categorized in one of 
the three mixture groups of concern (i.e. Group I, Group IIIa and Group IIIb). Price et al. (2012) 
also identified estrone as an important substance in complex mixtures (i.e. Group IIIb mixtures) 
in a dataset covering a range of European surface waters. In addition, estrone has also been 
identified as one of the drivers of mixture effects observed in selected bioassays in samples of 
the Danube used to evaluate effect-based tools (Neale et al. 2015, Königs et al. 2017, Kienle et 
al. 2019). Estrone is a known estrogenic substance in WWTP-effluents (Kienle et al. 2019). 
Estrone has also been identified to exceed its PNEC in at least 5% of the environmental samples 
covering >200 sites in 11 member states (JRC 2016). Cyanide is mainly identified in Group I 
mixtures, where it exceeds its HC5 in 21% of the mixture exposures. Cyanide is considered to 
be a river basin specific pollutant and exceedances of the EQS have been observed in 8 member 
states (EEA 2018). To a lesser extent also the pharmaceuticals paracetamol and ibuprofen have 
been identified to exceed HC5 values, as well as the industrial chemicals chloroacetic acid and 
bisphenol A. In addition, these substances were also observed to drive the mixture pressure in 
Group IIIa and/or Group IIIb mixtures. Paracetamol, ibuprofen and bisphenol A have been 
placed on the list of emerging substances of the NORMAN-network. Bisphenol A is a well-
known environmental contaminant that can be found in all surface waters and sediments across 
Europe in varying concentrations. Bisphenol A has been identified as a priority substance under 
the WFD directive (JRC 2016). Several studies have listed bisphenol A as one of the drivers of 
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toxic pressure (e.g. Price et al. 2012, Posthuma et al. 2019, Danube Joint Survey: bisphenol A). 
For paracetamol, environmental risks were assessed to be relatively low based on monitoring 
data in 104 individual sites across 4 EU-member states, with 90th percentile Risk Quotient 
values>0.01). For Ibuprofen, environmental risks were assessed to be higher compared to 
paracetamol, with 90th percentile RQ of 0.36 across >700 sites in 15 member states. Finally, 
chloroacetic acid concentrations are associated with relatively high predicted environmental 
risks across 4 member states, with 90th percentile RQ of 8.3 (JRC 2016).  
 
The driving chemicals under the unrealistic worst-case scenario are visualized in Figure 39. 
For tributylstannane, estrone, chloroacetic acid and cyanide an exceedance of the HC5 (i.e. 
HQ>1) was observed in 70-90% of the exposures. For ibuprofen and Irgarol, an HQ>1 was 
observed in 30% and 4% of the exposures, respectively. For all of these substances, however, 
measured concentrations were below the detection limit in at least 90% of the mixture 
exposures, indicating that the cumulative risk is mainly driven by non-detect. 
 
Table 25: Substances driving the cumulative risks for each of the mixture groups in the 
Adour-Garonne dataset under the more realistic scenario considering only the detect 
values 

Mixture group Substance Maximum 
HQ 

Number of mixture exposures 
where 

HQ>1 HQ>0.5 HQ>0.1 
Group I (n=207) 
(only substances for 
which HQ in at least 
five mixture 
exposures is >1) 

Estrone 9.2 135 143 145 
Cyanide 14.8 43 50 67 
Paracetamol 3.0 11 13 23 
Chloroacetic acid 15.9 10 14 17 
Ibuprofen 3.2 9 11 18 
Bisphenol A 3.0 8 9 11 

Group IIIa (n=19) 
(only substances for 
which HQ in at least 
two mixture 
exposure is >0.5) 

Estrone 0.97 0 11 12 
Bisphenol A 0.99 0 3 3 
Ibuprofen 0.91 0 3 5 
Paracetamol 0.79 0 2 6 
Chloroacetic acid 0.67 0 3 7 

Group IIIb (n=2) 
(only substances for 
which HQ in at least 
one mixture 
exposure is >0.1) 

Cyanide 0.96 0 2 2 
Estrone 0.70 0 2 2 
Paracetamol 0.14 0 0 2 
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Figure 39: Percentage of mixture exposures with an exceedance of HC5 (blue bar) and non-
detect values (substances is present below its detection limit), for the substances driving the 
unrealistic worst-case scenario in the Adour-Garonne dataset. 

 
 

3.3.2. PATTERNS OF CO-EXPOSURE IN MIXTURE RISKS 

In the Adour-Garonne dataset, different combinations of driving chemicals can be identified in 
the Group III mixture, mostly related to catchment difference. In the Charente catchment, the 
Group IIIa mixtures are driven by the risks associated with both estrone and chloroacetic acid. 
In the Garonne and Adour catchments, estrone is the common risk driver in Group IIIb 
mixtures, in combination with chloroacetic acid and/or cyanide. In the Lot catchment, the 
Group IIIa mixtures are mainly driven by the pharmaceutical ibuprofen in combination with 
paracetamol, while in the Dordogne bispenol A drives the mixtures risks in combination with 
paracetamol. The more complex mixtures in the two Group IIIb samples are driven by a 
combination of estrone, paracetamol and cyanide. 
 
 
 

3.3.3. MOA REFINEMENTS: MSPAFMOA-APPROACH 

In total, 22 different Modes of Action (MoA) were identified among the substances in Group 
IIIa and Group IIIB mixtures in the Adour-Garonne dataset, with non-polar narcosis, polar 
narcosis and diester toxicity being the most represented. Only a limited number of MoA 
contribute to the overall msPAFMoA (i.e. for only 8 MoA calculated PAFs were higher than 
0.001). On average estrogenic shows the highest PAF of all substances. 
Refining the mixture pressure assessment with the msPAFMoA-approach, resulted in a 
msPAFMoA>0.05 for 3 out of 19 Group IIIa mixtures. Under the msPAFMoA-approach the 
mixtures of concern are identified as those mixture exposures for which msPAFMoA³0.05, 
because for these mixture exposures it is predicted that at least 5% of the species is affected.  
 



 

 73 

 
Figure 40: Multi-substance Potentially Affected Fraction based on refinement per Mode of Action 
(msPAFMoA) as a function of the Hazard Index (HI) for Group IIIa (open symbols) and Group IIIb 
(filled symbols) mixtures. Under the msPAFMoA-approach the mixture exposures with 
msPAF>0.05 are predicted to be at risk. 
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4. TECHNICAL ANNEX D: BIOLOGICAL IMPACT OF MIXTURES 

4.1. COUPLING CHEMICAL AND BIOLOGICAL MONITORING DATABASES 

4.1.1. METHODOLOGY 

Biological status of surface waters is monitored under the auspices of the Water Framework 
Directive. The biological status is one part of the water quality, in addition to chemical water 
status. Member States are required to monitor and report the biological status of their surface 
waters. Typically, this is done using biological indices for different groups: most often for 
macroinvertebrates and fytobenthos as these are easy to monitor, but also fish, macrophytes 
and phytoplankton. These biological indices are of value to assess the real biological 
impact/ecological status of chemicals and mixtures. Biological indices are easier to interpret 
than the abundances of individual species, which are typically not reported anyway: 
interpretation of what species are sensitive or indicators of good water quality requires expert 
knowledge while the biological indices translate this to an interpretable value. In the 
environment, biological status is determined by a multitude of factors e.g. nutrients, 
hydromorphological properties and physico-chemistry of the water. This project will evaluate 
the relative contribution of chemical pressure on the biology. 
 
Coupling the available chemical monitoring databases with biological databases requires to 
find corresponding samples in both databases i.e. samples taken at the same location in a 
comparable time frame. The impact of chemical exposure often only manifests some time after 
it occurs (chronic effects). From an environmental perspective, these long-term effects are also 
the most critical. Therefore, the impact of chemicals was assessed on the biological status of 
the following year(s). In practice, this means that samples in the biological database were 
coupled with chemical samples from the year(s) before.  
 
 
4.1.2. DATA PROCESSING 

Three databases were explored for assessing the biological impact of mixtures: Waterbase, 
Adour-Garonne and Flanders. Depending on the database, multivariate (RDA) or univariate 
(GLM) statistical techniques were used.  
In the databases, not all biological indices are available for each row. As was the case for PCA, 
a complete dataset is required for RDA i.e. for each row (sample), all columns (biological 
indices) should have a value. Again, data processing is thus required to resolve this. If a 
reasonable dataset with multiple biological indices was not possible, the data were aggregated 
by taking the minimum value of available indices. This resulted in one value per sample, which 
was considered the worst case biological status for that sample. Additionally, biological indices 
do not necessarily have the same scale e.g. the number of sensitive EPT taxa cannot directly be 
compared to a derived index such as the Shannon-Wiener diversity index. Standardisation of 
all indices allowed each biological index to equally contribute to the analysis (in the case of 
RDA) or ensured comparability between the indices (when taking the minimum of available 
indices). The data processing per database is discussed below. 
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4.1.2.1. WATERBASE 

The Waterbase includes 14 biological indices for 28,941 rows, but the indices for 
macroinvertebrates and phytobenthos are clearly the most available (Table 26). Despite this 
large number of indices, there are typically only one or a few indices available per sampling 
location and period. This resulted in a dataset with many missing values, making a RDA 
impossible. Therefore, the minimum index per sampling location and date was selected and a 
GLM analysis was performed. 
Table 26: Biological indices in the Waterbase. 

Index Count 
PhytobenthosEQR_H 5 
PhytoplankotnEQR_A 54 
MacrophyteEQR_E 56 
PhytoplanktonEQR_G 57 
PhytobenthosEQR_A 68 
MacrophytesEQR_G 75 
FishEQR 84 
PhytoplanktonEQR_E 84 
InvertebrateEQR_H 173 
InvertebrateEQR_A 446 
InvertebrateEQR_E 1,270 
PhytobenthosEQR_G 5,961 
PhytobenthosEQR_E 7,537 
InvertebrateEQR_G 13,071 

 
To ensure the largest possible dataset, chemical measurements performed within 1.11 km (2 
digits of the coordinates) of the biological sampling location and from the same water body 
were considered. No exact dates are reported for the biological samples, but a time period of a 
few months.  
Coupling of the biological and chemical database proved difficult. There is minimal overlap in 
the sampling frequency: the biological data was available for the period 2006-2015 while the 
chemical data is nearly absent for this period (Figure 41). No corresponding chemical data was 
available for the year before the biological samples. Allowing the chemical measurements to 
be up to 5 years old, still only resulted in a dataset of 254 rows. Therefore, further analysis on 
the Waterbase dataset was not possible. 
 
 
 
 



 

 76 

 
Figure 41: Year availability in the biological (left) and chemical (right) datasets of the Waterbase. 

 
 
4.1.2.2. ADOUR-GARONNE 

The Adour-Garonne databases contain, in addition to chemical concentrations, measurements 
of the physico-chemistry of the water (e.g. pH, N, P, conductivity) and biological indices. 
Chemical and physico-chemistry data of the year before were coupled with the biological 
indices. The toxic units of the chemical concentrations (using the chronic HC5) were summed 
to derive a conservative (worst-case) estimate of the mixture pressure. After data processing, 
there was a high correlation (0.99) with the maximum toxic units, indicating that the mixture 
pressure was typically dominated by one chemical. 
 
31 indices are available in the Adour-Garonne database, of which 26 are regularly reported. 
Data exploration revealed that typically only one index was reported per sample. For RDA, a 
complete multivariate dataset could not be constructed. A GLM analysis was thus performed. 
The data were aggregated to take the minimum biological index for that sampling location, 
from here on referred to as the biological status index. Before aggregation, the indices were 
standardized by subtracting the mean value of the index for all samples and dividing by the 
standard deviation.  
 
Further data exploration revealed that the biological status indices were normally distributed. 
Therefore, the gaussian distribution was chosen for the GLM. Many of the physico-chemistry 
variables have many low values and a small number of higher values and were therefore log-
transformed to allow a better spread of the data. The following variables were log-transformed: 
chemical pressure (log(C + 0.01) to avoid issues with zeros), Kjeldahl N, Conductivity, BOD5, 
Suspended matter and total P. Following variables were not transformed: saturated oxygen, 
pH, temperature and dissolved oxygen. Temperature led to issues with multicollinearity, which 
should be avoided for GLM analyses. Therefore, temperature was left out of the analysis. 
Dissolved oxygen was highly correlated with saturated oxygen and was also left out of the 
GLM analysis.  
 
 
4.1.2.3. FLANDERS 

Eleven biodiveristy indices were available in the database, covering three ecological groups: 
phytobenthos (2 indices), macrophytes (5 indices) and macroinvertebrates (4 indices). An 
overview of the indices is given in Table 27. 
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Table 27: Biodiversity indices in the Flanders (VMM) database. 

Ecological group Biodiversity index abbreviation 
Phytobenthos Impact associated species IA 

Impact sensitive species IS 
Macrophytes Score for growth form GV 

Score for the development stage of the 
vegetation 

VO 

Disturbance score V 
Score for specific types TS 

Macroinvertebrates Shannon-Wienser diveristy index Shannon.Wiender.Diversity 
Number of sensitive taxa Number.of.Sensitive.Taxa 

Number of taxa Taxa.Richness 
Score calculated to indicate tolerance of taxa Tolerance.score 

Number of sensitive EPT taxa EPT.Richness 
 
Table 28: Pollutants measured in the Flanders dataset. 

Metals Pesticides 
Ag Diuron 
As Linuron 
B Metalochlor 
Ba Atrazine 
Be Desethylatrazine 
Cu Simazine 
Cd Terbutylazine 
C Chloridazon 
Cr Carbendazim 
Hg Pirimicarb 
M Flufenacet 
Ni aminomethylphosphonic acid 
Pb Glyfosaat 
Sn Mecoprop 
Se 2-methyl-4-chlorophenoxyacetic acid 
Sn Dichloorprop 
Te 4-(2,4-dichlorophenoxy)butyric acid r 
Ti Fluroxypyr 
 Diflufenican 
 Ethofumesate 
 Metribuzin 
 Oxadiazon 

 
Data was available from 2007 to 2015. The Flanders databases for physico-chemistry, 
pollutants and biodiversity indices have been coupled before in the context of the ELMO 
project4. The same methodology was followed in this project. For RDA analysis, a complete 
dataset is required. Because the metal concentrations and organic pollutants are monitored in 
separate monitoring campaigns, both were evaluated individually. For the organic pollutants, 
only the pesticides were selected. After coupling, the dataset consisted of 1,510 rows when 
using the metal concentrations and 572 rows with the pesticide concentrations. 
 
To account for mixture toxicity, the toxic units of the metals were summed. As effect 
concentrations, the ecological reference values were taken from Meclas (www.meclas.eu). To 

 
4 Bennetsen et al. 2014; https://www.life-belini.be/en/portfolio-item/integral-analysis-of-water-bodies-using-an-
aquatic-ecological-model/  
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account for background concentrations, the added concentration approach was used. For 
pesticides, because all pesticides were only measured in a small subset of the samples 
(0.025%), no toxic units were calculated but the pesticide concentrations were summed to get 
an indication of their potential role. The impact of pesticides could thus not be analysed 
thoroughly for this dataset. 
 
 
4.2. BIOLOGICAL IMPACT  

4.2.1. ADOUR-GARONNE 

After model selection, the final model included organic nitrogen (Kjeldahl), conductivity, 
chemical pressure and total phosphorus as significant variables (Table 29). All were found to 
have a negative impact on the biological status index, meaning that higher values of these 
variables decrease the biological status. The role of chemical pressure is however subservient 
to the influence of organic nitrogen (four times higher impact), conductivity (two times higher 
impact) and similar to the impact of phosphorus. Interestingly, biological oxygen demand and 
suspended matter were not found to impact the biological status.  
Model assumptions for the final model were validated based on visual inspection of the 
residuals, QQ-plots and observed versus predicted plots (Figure 42 and Figure 43). 
 
Table 29: Variables retained in the final GLM model, their estimated coefficient and 
associated p-value. 

Variable Estimated coefficient p-value 
(Intercept) -0.242 0.181 
SumTU_chronicHC5 -0.118 1.03E-09 
N.Kjeldahl -0.458 4.11E-07 
Conductivity -0.205 4.13E-07 
P.t -0.124 0.002 
SaturatedO -0.004 0.001 
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Figure 42: Model assumptions for the GLM analysis on the Adour-Garonne dataset. 
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Figure 43: Model assumptions for the GLM analysis on the Adour-Garonne dataset. 

 
 
4.2.2. FLANDERS 

The variance explained by the RDA was rather limited. For the analysis with metals, 32% of 
the variance was explained, for pesticides 43%. Considering metals, the physico-chemistry 
(especially nutrients nitrogen and phosphorus) was the main contributor to the biodiversity. 
Metals only contributed a minimal fraction to the biodiversity (1%) compared to physico-
chemistry (31%). In line with this, the RDA scores for metals were low and of low importance 
compared to nitrogen and phosphorus.  
The sum of all measured pesticides was found to be a more relevant contributor to the 
biodiversity, explaining 2% of the variance independently and 20% of the variance in 
combination with physico-chemistry. The summed pesticides were the main determinant of the 
first component, indicating its importance for measured biodiversity indices. In this analysis, 
the summed concentrations of the pesticides were used and this does thus not account for 
potential risks of pesticides (using toxic units). In combination with the low number of samples 
(572), this result suggests that this warrant further investigation but cannot be used to interpret 
the potential impact of pesticides. 
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Figure 44: Triplot for the RDA on the Flanders dataset with metals. FC = physico-chemistry, MET 
= metals. 
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Figure 45: The loading (indicates importance) of each variable (left) and the variance explained 
(right) for the RDA on the Flanders dataset with metals. FC = physico-chemistry, MET = metals. 
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Figure 46: Triplot for the RDA on the Flanders dataset with pesticides. FC = physico-chemistry, 
POL = pollutants i.e. pesticides. 
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Figure 47: The loading (indicates importance) of each variable (left) and the variance explained 
(right) for the RDA on the Flanders dataset with metals. FC = physico-chemistry, POL = 
pollutants i.e. pesticides. 
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5. TECHNICAL ANNEX E: IDENTIFICATION AND UNDERSTANDING CO-
EXPOSURE FOR HUMAN HEALTH 

See separate document. 


